Last updated: 2020-11-07

Checks: 7 0

Knit directory: csna_workflow/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190918) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 553d37f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    analysis/.Rhistory

Untracked files:
    Untracked:  analysis/.nfs0000000135a08b9b00002448
    Untracked:  analysis/.nfs0000000135a08ba50000244a
    Untracked:  analysis/07_do_diversity_report.Rmd
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a1.R
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a1.err
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a1.out
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a1.sh
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a2.R
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a2.err
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a2.out
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a2.sh
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a3.R
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a3.err
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a3.out
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a3.sh
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a4.R
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a4.err
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a4.out
    Untracked:  analysis/19_qtl_analysis_RTG20_GS_a4.sh
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a1.R
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a1.err
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a1.out
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a1.sh
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a2.R
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a2.err
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a2.out
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a2.sh
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a3.R
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a3.err
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a3.out
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a3.sh
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a4.R
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a4.err
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a4.out
    Untracked:  analysis/19_qtl_analysis_RTG20_G_a4.sh
    Untracked:  analysis/csna_image.sif
    Untracked:  analysis/scripts/
    Untracked:  analysis/temp/
    Untracked:  analysis/workflow_proc.R
    Untracked:  analysis/workflow_proc.sh
    Untracked:  analysis/workflow_proc.stderr
    Untracked:  analysis/workflow_proc.stdout
    Untracked:  code/reconst_utils.R
    Untracked:  data/69k_grid_pgmap.RData
    Untracked:  data/FinalReport/
    Untracked:  data/GCTA/
    Untracked:  data/GM/
    Untracked:  data/Jackson_Lab_11_batches/
    Untracked:  data/Jackson_Lab_12_batches/
    Untracked:  data/Jackson_Lab_Bubier_MURGIGV01/
    Untracked:  data/Jackson_Lab_Gagnon/
    Untracked:  data/RTG/
    Untracked:  data/cc_variants.sqlite
    Untracked:  data/marker_grid_0.02cM_plus.txt
    Untracked:  data/mouse_genes_mgi.sqlite
    Untracked:  data/pheno/
    Untracked:  output/AfterQC_Percent_missing_genotype_data.pdf
    Untracked:  output/AfterQC_Proportion_matching_genotypes_after_removal_of_bad_samples.pdf
    Untracked:  output/AfterQC_Proportion_matching_genotypes_before_removal_of_bad_samples.pdf
    Untracked:  output/AfterQC_number_crossover.pdf
    Untracked:  output/DO_Gigamuga_chr2_WSB_G21.png
    Untracked:  output/DO_Gigamuga_chr2_WSB_G22.png
    Untracked:  output/DO_Gigamuga_chr2_WSB_G23.png
    Untracked:  output/DO_Gigamuga_chr2_WSB_G25.png
    Untracked:  output/DO_Gigamuga_chr2_WSB_G29.png
    Untracked:  output/DO_Gigamuga_chr2_WSB_G30.png
    Untracked:  output/DO_Gigamuga_chr2_WSB_G31.png
    Untracked:  output/DO_Gigamuga_chr2_WSB_G32.png
    Untracked:  output/DO_Gigamuga_chr2_WSB_G33.png
    Untracked:  output/DO_Gigamuga_founder_proportions_G21.png
    Untracked:  output/DO_Gigamuga_founder_proportions_G22.png
    Untracked:  output/DO_Gigamuga_founder_proportions_G23.png
    Untracked:  output/DO_Gigamuga_founder_proportions_G25.png
    Untracked:  output/DO_Gigamuga_founder_proportions_G29.png
    Untracked:  output/DO_Gigamuga_founder_proportions_G30.png
    Untracked:  output/DO_Gigamuga_founder_proportions_G31.png
    Untracked:  output/DO_Gigamuga_founder_proportions_G32.png
    Untracked:  output/DO_Gigamuga_founder_proportions_G33.png
    Untracked:  output/DO_Gigamuga_founder_proportions_chr2_G21.png
    Untracked:  output/DO_Gigamuga_founder_proportions_chr2_G22.png
    Untracked:  output/DO_Gigamuga_founder_proportions_chr2_G23.png
    Untracked:  output/DO_Gigamuga_founder_proportions_chr2_G25.png
    Untracked:  output/DO_Gigamuga_founder_proportions_chr2_G29.png
    Untracked:  output/DO_Gigamuga_founder_proportions_chr2_G30.png
    Untracked:  output/DO_Gigamuga_founder_proportions_chr2_G31.png
    Untracked:  output/DO_Gigamuga_founder_proportions_chr2_G32.png
    Untracked:  output/DO_Gigamuga_founder_proportions_chr2_G33.png
    Untracked:  output/DO_recom_block_size_G21.png
    Untracked:  output/DO_recom_block_size_G22.png
    Untracked:  output/DO_recom_block_size_G23.png
    Untracked:  output/DO_recom_block_size_G25.png
    Untracked:  output/DO_recom_block_size_G29.png
    Untracked:  output/DO_recom_block_size_G30.png
    Untracked:  output/DO_recom_block_size_G31.png
    Untracked:  output/DO_recom_block_size_G32.png
    Untracked:  output/DO_recom_block_size_G33.png
    Untracked:  output/Histgram_Prj01_RL-Acquisition_preqc_02142020.pdf
    Untracked:  output/Histgram_Prj01_RL-Reversal_preqc_02142020.pdf
    Untracked:  output/Histgram_Prj02_Sensitization_preqc_02142020.pdf
    Untracked:  output/Histgram_Prj04_IVSA_preqc_02142020.pdf
    Untracked:  output/Novelty_residuals_RankNormal_datarelease_12182019-69k-genelist.csv
    Untracked:  output/Novelty_residuals_RankNormal_datarelease_12182019-69k-variantlist.csv
    Untracked:  output/Novelty_residuals_RankNormal_datarelease_12182019-genelist.csv
    Untracked:  output/Novelty_residuals_RankNormal_datarelease_12182019-variantlist.csv
    Untracked:  output/Percent_genotype_errors_obs_vs_predicted.pdf
    Untracked:  output/Percent_missing_genotype_data.pdf
    Untracked:  output/Percent_missing_genotype_data_per_marker.pdf
    Untracked:  output/Proportion_matching_genotypes_after_removal_of_bad_samples.pdf
    Untracked:  output/Proportion_matching_genotypes_after_removal_samples_percent_missing_5.pdf
    Untracked:  output/Proportion_matching_genotypes_before_removal_of_bad_samples.pdf
    Untracked:  output/Proportion_matching_genotypes_before_removal_samples.pdf
    Untracked:  output/RTG/
    Untracked:  output/blup/
    Untracked:  output/condi.m2.Novelty_residuals_RankNormal_datarelease_12182019_genomescan.pdf
    Untracked:  output/condi.m2.qtl.blup_Novelty_residuals_RankNormal_datarelease_12182019_coeffgeneplot.pdf
    Untracked:  output/condi.m2.qtl.out.RData
    Untracked:  output/conditional.69k.Novelty_residuals_RankNormal_datarelease_12182019-genelist.csv
    Untracked:  output/conditional.69k.Novelty_residuals_RankNormal_datarelease_12182019-variantlist.csv
    Untracked:  output/conditional.Novelty_residuals_RankNormal_datarelease_12182019-genelist.csv
    Untracked:  output/conditional.Novelty_residuals_RankNormal_datarelease_12182019-variantlist.csv
    Untracked:  output/conditional.m2.69k.Novelty_residuals_RankNormal_datarelease_12182019.RData
    Untracked:  output/conditional.m2.69k.Novelty_residuals_RankNormal_datarelease_12182019_coeffgeneplot.pdf
    Untracked:  output/conditional.m2.69k.Novelty_residuals_RankNormal_datarelease_12182019_genomescan.pdf
    Untracked:  output/conditional.m2.Novelty_residuals_RankNormal_datarelease_12182019.RData
    Untracked:  output/conditional.m2.Novelty_residuals_RankNormal_datarelease_12182019_coeffgeneplot.pdf
    Untracked:  output/conditional.m2.Novelty_residuals_RankNormal_datarelease_12182019_genomescan.pdf
    Untracked:  output/conditional.m2.qtl.out.RData
    Untracked:  output/conditional_m2.Novelty_residuals_RankNormal_datarelease_07302918_genomescan.pdf
    Untracked:  output/conditional_m2.Novelty_residuals_RankNormal_datarelease_12182019_genomescan.pdf
    Untracked:  output/genotype_error_marker.pdf
    Untracked:  output/genotype_frequency_marker.pdf
    Untracked:  output/m1.Novelty_resids_datarelease_07302918.RData
    Untracked:  output/m1.Novelty_resids_datarelease_07302918_coeffgeneplot.pdf
    Untracked:  output/m1.Novelty_resids_datarelease_07302918_genomescan.pdf
    Untracked:  output/m1.Novelty_resids_datarelease_12182019.RData
    Untracked:  output/m1.Novelty_resids_datarelease_12182019_coeffgeneplot.pdf
    Untracked:  output/m1.Novelty_resids_datarelease_12182019_genomescan.pdf
    Untracked:  output/m1.Novelty_residuals_RankNormal_datarelease_07302918.RData
    Untracked:  output/m1.Novelty_residuals_RankNormal_datarelease_07302918_genomescan.pdf
    Untracked:  output/m1.Novelty_residuals_RankNormal_datarelease_12182019.RData
    Untracked:  output/m1.Novelty_residuals_RankNormal_datarelease_12182019_coeffgeneplot.pdf
    Untracked:  output/m1.Novelty_residuals_RankNormal_datarelease_12182019_genomescan.pdf
    Untracked:  output/m2.69k.Novelty_residuals_RankNormal_datarelease_12182019.RData
    Untracked:  output/m2.69k.Novelty_residuals_RankNormal_datarelease_12182019_coeffgeneplot.pdf
    Untracked:  output/m2.69k.Novelty_residuals_RankNormal_datarelease_12182019_genomescan.pdf
    Untracked:  output/m2.69k.Prj01_RL-Acquisition_preqc_02142020.RData
    Untracked:  output/m2.69k.Prj01_RL-Reversal_preqc_02142020.RData
    Untracked:  output/m2.69k.Prj02_Sensitization_preqc_02142020.RData
    Untracked:  output/m2.69k.Prj04_IVSA_preqc_02142020.RData
    Untracked:  output/m2.Novelty_resids_datarelease_07302918.RData
    Untracked:  output/m2.Novelty_resids_datarelease_07302918_genomescan.pdf
    Untracked:  output/m2.Novelty_resids_datarelease_12182019.RData
    Untracked:  output/m2.Novelty_resids_datarelease_12182019_coeffgeneplot.pdf
    Untracked:  output/m2.Novelty_resids_datarelease_12182019_genomescan.pdf
    Untracked:  output/m2.Novelty_residuals_RankNormal_datarelease_07302918.RData
    Untracked:  output/m2.Novelty_residuals_RankNormal_datarelease_07302918_genomescan.pdf
    Untracked:  output/m2.Novelty_residuals_RankNormal_datarelease_12182019.RData
    Untracked:  output/m2.Novelty_residuals_RankNormal_datarelease_12182019_coeffgeneplot.pdf
    Untracked:  output/m2.Novelty_residuals_RankNormal_datarelease_12182019_genomescan.pdf
    Untracked:  output/m2.Prj01_RL-Acquisition_preqc_02142020.RData
    Untracked:  output/m2.Prj01_RL-Acquisition_preqc_02142020_qtl2scan.pdf
    Untracked:  output/m2.Prj01_RL-Reversal_preqc_02142020.RData
    Untracked:  output/m2.Prj01_RL-Reversal_preqc_02142020_qtl2scan.pdf
    Untracked:  output/m2.Prj02_Sensitization_preqc_02142020.RData
    Untracked:  output/m2.Prj02_Sensitization_preqc_02142020_qtl2scan.pdf
    Untracked:  output/m2.Prj04_IVSA_preqc_02142020.RData
    Untracked:  output/m2.Prj04_IVSA_preqc_02142020_qtl2scan.pdf
    Untracked:  output/m3.Novelty_resids_datarelease_07302918.RData
    Untracked:  output/m3.Novelty_resids_datarelease_07302918_genomescan.pdf
    Untracked:  output/m3.Novelty_resids_datarelease_12182019.RData
    Untracked:  output/m3.Novelty_resids_datarelease_12182019_coeffgeneplot.pdf
    Untracked:  output/m3.Novelty_resids_datarelease_12182019_genomescan.pdf
    Untracked:  output/m3.Novelty_residuals_RankNormal_datarelease_07302918.RData
    Untracked:  output/m3.Novelty_residuals_RankNormal_datarelease_07302918_genomescan.pdf
    Untracked:  output/m3.Novelty_residuals_RankNormal_datarelease_12182019.RData
    Untracked:  output/m3.Novelty_residuals_RankNormal_datarelease_12182019_coeffgeneplot.pdf
    Untracked:  output/m3.Novelty_residuals_RankNormal_datarelease_12182019_genomescan.pdf
    Untracked:  output/num.geno.pheno.in.Novelty_resids_datarelease_07302918.csv
    Untracked:  output/num.geno.pheno.in.Novelty_resids_datarelease_12182019.csv
    Untracked:  output/num.geno.pheno.in.Novelty_residuals_RankNormal_datarelease_07302918.csv
    Untracked:  output/num.geno.pheno.in.Novelty_residuals_RankNormal_datarelease_12182019.csv
    Untracked:  output/number_crossover.pdf
    Untracked:  output/permu/
    Untracked:  output/prop_across_generation_chr_p.RData

Unstaged changes:
    Modified:   README.md
    Modified:   _workflowr.yml
    Deleted:    analysis/01_geneseek2qtl2.R
    Deleted:    analysis/02_geneseek2intensity.R
    Deleted:    analysis/03_firstgm2genoprobs.R
    Deleted:    analysis/04_diagnosis_qc_gigamuga_11_batches.Rmd
    Deleted:    analysis/04_diagnosis_qc_gigamuga_nine_batches.R
    Deleted:    analysis/04_diagnosis_qc_gigamuga_nine_batches.Rmd
    Deleted:    analysis/05_after_diagnosis_qc_gigamuga_11_batches.Rmd
    Deleted:    analysis/05_after_diagnosis_qc_gigamuga_nine_batches.R
    Deleted:    analysis/05_after_diagnosis_qc_gigamuga_nine_batches.Rmd
    Deleted:    analysis/06_final_pr_apr_69K.R
    Deleted:    analysis/07.1_html_founder_prop.R
    Deleted:    analysis/07_recomb_size_founder_prop.R
    Deleted:    analysis/07_recomb_size_founder_prop.Rmd
    Deleted:    analysis/08_gcta_herit.R
    Deleted:    analysis/09_qtlmapping.R
    Deleted:    analysis/10_qtl_permu.R
    Deleted:    analysis/11_qtl_blup.R
    Deleted:    analysis/12_plot_69k_qtl_mapping_2.Rmd
    Deleted:    analysis/12_plot_qtl_mapping_1.Rmd
    Deleted:    analysis/12_plot_qtl_mapping_2.Rmd
    Deleted:    analysis/13_plot_69k_conditional_m2_qtlmapping.Rmd
    Deleted:    analysis/13_plot_conditional_m2_qtlmapping.Rmd
    Deleted:    analysis/16_diagnosis_qc_gigamuga_gagnon.Rmd
    Deleted:    analysis/16_diagnosis_qc_gigamuga_gagnon2.Rmd
    Deleted:    analysis/17_plot_qtl_mapping.Rmd
    Deleted:    analysis/run_01_geneseek2qtl2.R
    Deleted:    analysis/run_02_geneseek2intensity.R
    Deleted:    analysis/run_03_firstgm2genoprobs.R
    Deleted:    analysis/run_04_diagnosis_qc_gigamuga_nine_batches.R
    Deleted:    analysis/run_05_after_diagnosis_qc_gigamuga_nine_batches.R
    Deleted:    analysis/run_06_final_pr_apr_69K.R
    Deleted:    analysis/run_07.1_html_founder_prop.R
    Deleted:    analysis/run_07_recomb_size_founder_prop.R
    Deleted:    analysis/run_08_gcta_herit.R
    Deleted:    analysis/run_09_qtlmapping.R
    Deleted:    analysis/run_10_qtl_permu.R
    Deleted:    analysis/run_11_qtl_blup.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/05_after_diagnosis_qc_gigamuga_12_batches.Rmd) and HTML (docs/05_after_diagnosis_qc_gigamuga_12_batches.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 6610ab1 xhyuo 2020-11-05 Build site.
Rmd 8d3b7b7 xhyuo 2020-11-04 12_batches_before_afterQC
html 070d088 xhyuo 2020-11-04 Build site.
Rmd 1b61cb6 xhyuo 2020-11-04 12_batches_before_afterQC

After genotype diagnostics for diversity outbred mice

We first load the R/qtl2 package and the data. We’ll also load the R/broman package for some utilities and plotting functions, and R/qtlcharts for interactive graphs.

library

library(broman)
library(qtl2)
library(qtlcharts)
library(ggplot2)
library(ggrepel)
#library(DOQTL)
library(mclust)
library(tidyverse)
library(reshape2)
library(DT)
source("code/reconst_utils.R")
options(stringsAsFactors = F)

Missing data per sample

gm <- get(load("data/Jackson_Lab_12_batches/gm_DO3173_qc.RData"))
gm
Object of class cross2 (crosstype "do")

Total individuals              3173
No. genotyped individuals      3173
No. phenotyped individuals     3173
No. with both geno & pheno     3173

No. phenotypes                    1
No. covariates                    5
No. phenotype covariates          0

No. chromosomes                  20
Total markers                112470

No. markers by chr:
   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
8532 8649 6402 6603 6558 6429 6281 5660 5856 5438 6339 5151 5259 5027 4548 4356 
  17   18   19    X 
4322 3986 3103 3971 
percent_missing <- n_missing(gm, "ind", "prop")*100
setScreenSize(height=100, width=300)
Set screen size to height=100 x width=300
labels <- paste0(names(percent_missing), " (", round(percent_missing,2), "%)")
iplot(seq_along(percent_missing), percent_missing, indID=labels,
      chartOpts=list(xlab="Mouse", ylab="Percent missing genotype data",
                     ylim=c(0, 60)))
#save into pdf
pdf(file = "data/Jackson_Lab_12_batches/AfterQC_Percent_missing_genotype_data.pdf", width = 20, height = 20)
labels <- as.character(do.call(rbind.data.frame, strsplit(ind_ids(gm), "V01_"))[,2])
labels[percent_missing < 5] = ""
# Change point shapes and colors
p <- ggplot(data = data.frame(Mouse=seq_along(percent_missing),  
                         Percent_missing_genotype_data = percent_missing,
                         batch = factor(as.character(do.call(rbind.data.frame, strsplit(ind_ids(gm), "_"))[,5]))), 
        aes(x=Mouse, y=Percent_missing_genotype_data, color = batch)) +
  geom_point() +
  geom_hline(yintercept=5, linetype="solid", color = "red") +
  geom_text_repel(aes(label=labels), vjust = 0, nudge_y = 0.01, show.legend = FALSE, size=3) +
  theme(text = element_text(size = 20))
p
dev.off()
png 
  2 
p

Version Author Date
070d088 xhyuo 2020-11-04

Sexes

xint <- read_csv_numer("data/Jackson_Lab_12_batches/Jackson_Lab_12_batches_qtl2_chrXint.csv", transpose=TRUE)
yint <- read_csv_numer("data/Jackson_Lab_12_batches/Jackson_Lab_12_batches_qtl2_chrYint.csv", transpose=TRUE)

#subset to gm subject name
xint <- xint[rownames(xint) %in% ind_ids(gm),]
yint <- yint[rownames(yint) %in% ind_ids(gm),]

# Gigamuga marker annotation file from UNC.
gm_marker_file = "http://csbio.unc.edu/MUGA/snps.gigamuga.Rdata" #FIXED
# Read in the UNC GigaMUGA SNPs and clusters.
load(url(gm_marker_file))
#subset down to gm
snps$marker = as.character(snps$marker)

#load the intensities.fst.RData
load("data/Jackson_Lab_12_batches/intensities.fst.RData")
#X and Y channel
X <- result[result$channel == "X",]
rownames(X) <- X$snp
X <- X[,c(-1,-2)]

Y <- result[result$channel == "Y",]
rownames(Y) <- Y$snp
Y <- Y[,c(-1,-2)]

#determine predict.sex
predict.sex = determine_sex_chry_m(x = X, y = Y, markers = snps)$sex

gm$covar <- gm$covar %>%
  mutate(id = rownames(gm$covar)) %>%
  left_join(data.frame(id = names(predict.sex),
                       predict.sex = predict.sex,stringsAsFactors = F))
Joining, by = c("id", "predict.sex")
rownames(gm$covar) <- gm$covar$id

#sex order
sex <- gm$covar[rownames(xint),"sex"]

x_pval <- apply(xint, 2, function(a) t.test(a ~ sex)$p.value)
y_pval <- apply(yint, 2, function(a) t.test(a ~ sex)$p.value)

xint_ave <- rowMeans(xint[, x_pval < 0.05/length(x_pval)], na.rm=TRUE)
yint_ave <- rowMeans(yint[, y_pval < 0.05/length(y_pval)], na.rm=TRUE)

point_colors <- as.character( brocolors("web")[c("green", "purple")] )
labels <- paste0(names(xint_ave))
iplot(xint_ave, yint_ave, group=sex, indID=labels,
      chartOpts=list(pointcolor=point_colors, pointsize=4,
                     xlab="Average X chr intensity", ylab="Average Y chr intensity"))
phetX <- rowSums(gm$geno$X == 2)/rowSums(gm$geno$X != 0)
iplot(xint_ave, phetX, group=sex, indID=labels,
      chartOpts=list(pointcolor=point_colors, pointsize=4,
                     xlab="Average X chr intensity", ylab="Proportion het on X chr"))

Sample duplicates

cg <- compare_geno(gm, cores=10)
summary.cg <- summary(cg, threshold = 0.65)
#get the name and missing percentage
summary.cg$Name.ind1 <- str_split_fixed(summary.cg$ind1, "_",7)[,6]
summary.cg$Name.ind2 <- str_split_fixed(summary.cg$ind2, "_",7)[,6]
summary.cg$miss.ind1 <- percent_missing[match(summary.cg$ind1, names(percent_missing))]
summary.cg$miss.ind2 <- percent_missing[match(summary.cg$ind2, names(percent_missing))]
summary.cg$remove.id <- ifelse(summary.cg$miss.ind1 > summary.cg$miss.ind2, summary.cg$ind1, summary.cg$ind2)

#display summary.cg
DT::datatable(summary.cg, filter = list(position = 'top', clear = FALSE),
              options = list(pageLength = 40, scrollY = "300px", scrollX = "40px"))
pdf(file = "data/Jackson_Lab_12_batches/AfterQC_Proportion_matching_genotypes_before_removal_of_bad_samples.pdf", width = 20, height = 20) 
par(mar=c(5.1,0.6,0.6, 0.6))
hist(cg[upper.tri(cg)], breaks=seq(0, 1, length=201),
     main="", yaxt="n", ylab="", xlab="Proportion matching genotypes")
rug(cg[upper.tri(cg)])
dev.off()
png 
  2 
par(mar=c(5.1,0.6,0.6, 0.6))
hist(cg[upper.tri(cg)], breaks=seq(0, 1, length=201),
     main="", yaxt="n", ylab="", xlab="Proportion matching genotypes")
rug(cg[upper.tri(cg)])

Version Author Date
070d088 xhyuo 2020-11-04
pdf(file = "data/Jackson_Lab_12_batches/AfterQC_Proportion_matching_genotypes_after_removal_of_bad_samples.pdf",width = 20, height = 20) 
cgsub <- cg[percent_missing < 5, percent_missing < 5]
par(mar=c(5.1,0.6,0.6, 0.6))
hist(cgsub[upper.tri(cgsub)], breaks=seq(0, 1, length=201),
     main="", yaxt="n", ylab="", xlab="Proportion matching genotypes")
rug(cgsub[upper.tri(cgsub)])
dev.off()
png 
  2 
cgsub <- cg[percent_missing < 5, percent_missing < 5]
par(mar=c(5.1,0.6,0.6, 0.6))
hist(cgsub[upper.tri(cgsub)], breaks=seq(0, 1, length=201),
     main="", yaxt="n", ylab="", xlab="Proportion matching genotypes")
rug(cgsub[upper.tri(cgsub)])

Version Author Date
070d088 xhyuo 2020-11-04
#show top 20 samples with missing genotypes
percent_missing <- n_missing(gm, "ind", "prop")*100
round(sort(percent_missing, decreasing=TRUE)[1:20], 1)
Jackson_Lab_Bubier_MURGIGV01_20190425_18169_D12 
                                            9.7 
 Jackson_Lab_Bubier_MURGIGV01_20190425_18196_E3 
                                            9.6 
 Jackson_Lab_Bubier_MURGIGV01_20190425_18903_A3 
                                            8.8 
 Jackson_Lab_Bubier_MURGIGV01_20190425_18927_A6 
                                            8.5 
 Jackson_Lab_Bubier_MURGIGV01_20190425_18798_A2 
                                            8.1 
 Jackson_Lab_Bubier_MURGIGV01_20190425_18842_E7 
                                            7.6 
 Jackson_Lab_Bubier_MURGIGV01_20190425_18799_B2 
                                            7.2 
 Jackson_Lab_Bubier_MURGIGV01_20160908_7689_A12 
                                            6.9 
 Jackson_Lab_Bubier_MURGIGV01_20190108_16961_G6 
                                            6.5 
 Jackson_Lab_Bubier_MURGIGV01_20181207_16256_G1 
                                            6.2 
 Jackson_Lab_Gagnon_MURGIGV01_20191011_20649_A1 
                                            6.2 
Jackson_Lab_Bubier_MURGIGV01_20190108_16866_G12 
                                            6.1 
 Jackson_Lab_Bubier_MURGIGV01_20190108_17142_E1 
                                            5.7 
Jackson_Lab_Bubier_MURGIGV01_20181207_15071_B12 
                                            5.6 
Jackson_Lab_Bubier_MURGIGV01_20190425_18256_A11 
                                            5.6 
 Jackson_Lab_Bubier_MURGIGV01_20190108_17143_F1 
                                            5.5 
 Jackson_Lab_Gagnon_MURGIGV01_20191011_20658_B1 
                                            5.5 
Jackson_Lab_Bubier_MURGIGV01_20190108_17018_A12 
                                            5.4 
 Jackson_Lab_Bubier_MURGIGV01_20181207_14695_F7 
                                            5.3 
 Jackson_Lab_Bubier_MURGIGV01_20181206_16219_H7 
                                            5.2 

Array intensities and Genotype frequencies

int <- result[,c("snp","channel",ind_ids(gm))]
#rm(result)
int <- int[seq(1, nrow(int), by=2),-(1:2)] + int[-seq(1, nrow(int), by=2),-(1:2)]
int <- int[,intersect(ind_ids(gm), colnames(int))]
n <- names(sort(percent_missing[intersect(ind_ids(gm), colnames(int))], decreasing=TRUE))
iboxplot(log10(t(int[,n])+1), orderByMedian=FALSE, chartOpts=list(ylab="log10(SNP intensity + 1)"))
# Genotype frequencies
g <- do.call("cbind", gm$geno[1:19])
fg <- do.call("cbind", gm$founder_geno[1:19])
g <- g[,colSums(fg==0)==0]
fg <- fg[,colSums(fg==0)==0]
fgn <- colSums(fg==3)

gf_ind <- vector("list", 4)
for(i in 1:4) {
  gf_ind[[i]] <- t(apply(g[,fgn==i], 1, function(a) table(factor(a, 1:3))/sum(a != 0)))
}

par(mfrow=c(4,1), mar=c(0.6, 0.6, 2.6, 0.6))
for(i in 1:4) {
  triplot(c("AA", "AB", "BB"), main=paste0("MAF = ", i, "/8"))
  tripoints(gf_ind[[i]], pch=21, bg="lightblue")
  tripoints(c((1-i/8)^2, 2*i/8*(1-i/8), (i/8)^2), pch=21, bg="violetred")
  
  if(i>=3) { # label mouse with lowest het
    wh <- which(gf_ind[[i]][,2] == min(gf_ind[[i]][,2]))
    tritext(gf_ind[[i]][wh,,drop=FALSE] + c(0.02, -0.02, 0),
            names(wh), adj=c(0, 1))
  }
  
  # label other mice
  if(i==1) {
    lab <- rownames(gf_ind[[i]])[gf_ind[[i]][,2]>0.3]
  }
  else if(i==2) {
    lab <- rownames(gf_ind[[i]])[gf_ind[[i]][,2]>0.48]
  }
  else if(i==3) {
    lab <- rownames(gf_ind[[i]])[gf_ind[[i]][,2]>0.51]
  }
  else if(i==4) {
    lab <- rownames(gf_ind[[i]])[gf_ind[[i]][,2]>0.6]
  }
  
  for(ind in lab) {
    if(grepl("^F", ind) && i != 3) {
      tritext(gf_ind[[i]][ind,,drop=FALSE] + c(-0.01, 0, +0.01), ind, adj=c(1,0.5))
    } else {
      tritext(gf_ind[[i]][ind,,drop=FALSE] + c(0.01, 0, -0.01), ind, adj=c(0,0.5))
    }
  }
}

Version Author Date
070d088 xhyuo 2020-11-04

Crossover counts and Genotyping error LOD scores

#load pre-caluated results
load("data/Jackson_Lab_12_batches/nxo.RData")

#crossover
totxo <- rowSums(nxo)[names(rowSums(nxo)) %in% ind_ids(gm)]
totxo <- totxo[ind_ids(gm)]
all.equal(ind_ids(gm), names(totxo))
[1] TRUE
iplot(seq_along(totxo),
      totxo,
      group=gm$covar$ngen,
      chartOpts=list(xlab="Mouse", ylab="Number of crossovers", 
                     margin=list(left=80,top=40,right=40,bottom=40,inner=5),
                     axispos=list(xtitle=25,ytitle=50,xlabel=5,ylabel=5)))
#save crossover into pdf
pdf(file = "data/Jackson_Lab_12_batches/AfterQC_number_crossover.pdf")
cross_over <- data.frame(Mouse = seq_along(totxo), Number_crossovers = totxo, generation = gm$covar$ngen)
names(totxo) <- as.character(do.call(rbind.data.frame, strsplit(names(totxo), "V01_"))[,2])
names(totxo)[totxo <= 800] = ""
# Change point shapes and colors
p <-ggplot(cross_over, aes(x=Mouse, y=Number_crossovers, fill = generation, color=generation)) +
  geom_point() +
  geom_text_repel(aes(label=names(totxo),hjust=0,vjust=0), show.legend = FALSE)
p
dev.off()
png 
  2 
p

Version Author Date
070d088 xhyuo 2020-11-04

sessionInfo()
R version 4.0.0 (2020-04-24)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.4 LTS

Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.2.20.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=C             
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] DT_0.13           reshape2_1.4.4    forcats_0.5.0     stringr_1.4.0    
 [5] dplyr_1.0.0       purrr_0.3.4       readr_1.4.0       tidyr_1.1.0      
 [9] tibble_3.0.1      tidyverse_1.3.0   mclust_5.4.6      ggrepel_0.8.2    
[13] ggplot2_3.3.2     qtlcharts_0.12-10 qtl2_0.22-8       broman_0.70-4    
[17] workflowr_1.6.2  

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.4.6      lubridate_1.7.9   assertthat_0.2.1  rprojroot_1.3-2  
 [5] digest_0.6.25     plyr_1.8.6        R6_2.4.1          cellranger_1.1.0 
 [9] backports_1.1.6   reprex_0.3.0      RSQLite_2.2.0     evaluate_0.14    
[13] httr_1.4.1        pillar_1.4.4      rlang_0.4.6       readxl_1.3.1     
[17] rstudioapi_0.11   data.table_1.12.8 whisker_0.4       blob_1.2.1       
[21] rmarkdown_2.5     labeling_0.4.2    qtl_1.46-2        htmlwidgets_1.5.1
[25] bit_1.1-15.2      munsell_0.5.0     broom_0.7.2       compiler_4.0.0   
[29] httpuv_1.5.4      modelr_0.1.8      xfun_0.13         pkgconfig_2.0.3  
[33] htmltools_0.4.0   tidyselect_1.1.0  fansi_0.4.1       crayon_1.3.4     
[37] dbplyr_2.0.0      withr_2.2.0       later_1.0.0       grid_4.0.0       
[41] jsonlite_1.6.1    gtable_0.3.0      lifecycle_0.2.0   DBI_1.1.0        
[45] git2r_0.27.1      magrittr_1.5      scales_1.1.1      cli_2.0.2        
[49] stringi_1.4.6     farver_2.0.3      fs_1.4.1          promises_1.1.0   
[53] xml2_1.3.2        ellipsis_0.3.0    generics_0.0.2    vctrs_0.3.1      
[57] tools_4.0.0       bit64_0.9-7       glue_1.4.0        crosstalk_1.1.0.1
[61] hms_0.5.3         parallel_4.0.0    yaml_2.2.1        colorspace_1.4-1 
[65] rvest_0.3.6       memoise_1.1.0     knitr_1.28        haven_2.3.1