Last updated: 2019-09-23

Checks: 7 0

Knit directory: csna_workflow/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190918) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Untracked files:
    Untracked:  analysis/01_geneseek2qtl2.R
    Untracked:  analysis/01_geneseek2qtl2.Rout
    Untracked:  analysis/01_geneseek2qtl2.script
    Untracked:  analysis/01_geneseek2qtl2.stderr
    Untracked:  analysis/01_geneseek2qtl2.stdout
    Untracked:  analysis/02_geneseek2intensity.R
    Untracked:  analysis/02_geneseek2intensity.Rout
    Untracked:  analysis/02_geneseek2intensity.script
    Untracked:  analysis/02_geneseek2intensity.stderr
    Untracked:  analysis/02_geneseek2intensity.stdout
    Untracked:  analysis/03_firstgm2genoprobs.R
    Untracked:  analysis/03_firstgm2genoprobs.Rout
    Untracked:  analysis/03_firstgm2genoprobs.script
    Untracked:  analysis/03_firstgm2genoprobs.stderr
    Untracked:  analysis/03_firstgm2genoprobs.stdout
    Untracked:  analysis/04_diagnosis_qc_gigamuga_nine_batches.R
    Untracked:  analysis/04_diagnosis_qc_gigamuga_nine_batches.Rout
    Untracked:  analysis/04_diagnosis_qc_gigamuga_nine_batches.script
    Untracked:  analysis/04_diagnosis_qc_gigamuga_nine_batches.stderr
    Untracked:  analysis/04_diagnosis_qc_gigamuga_nine_batches.stdout
    Untracked:  analysis/05_after_diagnosis_qc_gigamuga_nine_batches.R
    Untracked:  analysis/05_after_diagnosis_qc_gigamuga_nine_batches.Rout
    Untracked:  analysis/05_after_diagnosis_qc_gigamuga_nine_batches.script
    Untracked:  analysis/05_after_diagnosis_qc_gigamuga_nine_batches.stderr
    Untracked:  analysis/05_after_diagnosis_qc_gigamuga_nine_batches.stdout
    Untracked:  analysis/06_final_pr_apr_69K.R
    Untracked:  analysis/06_final_pr_apr_69K.Rout
    Untracked:  analysis/06_final_pr_apr_69K.script
    Untracked:  analysis/06_final_pr_apr_69K.stderr
    Untracked:  analysis/06_final_pr_apr_69K.stdout
    Untracked:  analysis/07.1_html_founder_prop.R
    Untracked:  analysis/07.1_html_founder_prop.Rout
    Untracked:  analysis/07.1_html_founder_prop.script
    Untracked:  analysis/07.1_html_founder_prop.stderr
    Untracked:  analysis/07.1_html_founder_prop.stdout
    Untracked:  analysis/07_recomb_size_founder_prop.R
    Untracked:  analysis/07_recomb_size_founder_prop.Rmd
    Untracked:  analysis/07_recomb_size_founder_prop.Rout
    Untracked:  analysis/07_recomb_size_founder_prop.script
    Untracked:  analysis/07_recomb_size_founder_prop.stderr
    Untracked:  analysis/07_recomb_size_founder_prop.stdout
    Untracked:  analysis/08_gcta_herit.R
    Untracked:  analysis/09_qtlmapping.R
    Untracked:  analysis/Novelty_resids_datarelease_07302918.gcta.Rout
    Untracked:  analysis/Novelty_resids_datarelease_07302918.gcta.script
    Untracked:  analysis/Novelty_resids_datarelease_07302918.gcta.stderr
    Untracked:  analysis/Novelty_resids_datarelease_07302918.gcta.stdout
    Untracked:  analysis/Novelty_resids_datarelease_07302918_m1.Rout
    Untracked:  analysis/Novelty_resids_datarelease_07302918_m1.script
    Untracked:  analysis/Novelty_resids_datarelease_07302918_m1.stderr
    Untracked:  analysis/Novelty_resids_datarelease_07302918_m1.stdout
    Untracked:  analysis/Novelty_resids_datarelease_07302918_m2.Rout
    Untracked:  analysis/Novelty_resids_datarelease_07302918_m2.script
    Untracked:  analysis/Novelty_resids_datarelease_07302918_m2.stderr
    Untracked:  analysis/Novelty_resids_datarelease_07302918_m2.stdout
    Untracked:  analysis/Novelty_resids_datarelease_07302918_m3.Rout
    Untracked:  analysis/Novelty_resids_datarelease_07302918_m3.script
    Untracked:  analysis/Novelty_resids_datarelease_07302918_m3.stderr
    Untracked:  analysis/Novelty_resids_datarelease_07302918_m3.stdout
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918.gcta.Rout
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918.gcta.script
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918.gcta.stderr
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918.gcta.stdout
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918_m1.Rout
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918_m1.script
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918_m1.stderr
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918_m1.stdout
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918_m2.Rout
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918_m2.script
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918_m2.stderr
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918_m2.stdout
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918_m3.Rout
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918_m3.script
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918_m3.stderr
    Untracked:  analysis/Novelty_residuals_RankNormal_datarelease_07302918_m3.stdout
    Untracked:  analysis/run_01_geneseek2qtl2.R
    Untracked:  analysis/run_02_geneseek2intensity.R
    Untracked:  analysis/run_03_firstgm2genoprobs.R
    Untracked:  analysis/run_04_diagnosis_qc_gigamuga_nine_batches.R
    Untracked:  analysis/run_05_after_diagnosis_qc_gigamuga_nine_batches.R
    Untracked:  analysis/run_06_final_pr_apr_69K.R
    Untracked:  analysis/run_07.1_html_founder_prop.R
    Untracked:  analysis/run_07_recomb_size_founder_prop.R
    Untracked:  analysis/run_08_gcta_herit.R
    Untracked:  analysis/run_09_qtlmapping.R
    Untracked:  code/reconst_utils.R
    Untracked:  data/FinalReport/
    Untracked:  data/GCTA/
    Untracked:  data/GM/
    Untracked:  data/Jackson_Lab_Bubier_MURGIGV01/
    Untracked:  data/cc_variants.sqlite
    Untracked:  data/marker_grid_0.02cM_plus.txt
    Untracked:  data/mouse_genes_mgi.sqlite
    Untracked:  data/pheno/
    Untracked:  docs/figure/
    Untracked:  output/AfterQC_Percent_missing_genotype_data.pdf
    Untracked:  output/AfterQC_Proportion_matching_genotypes_after_removal_of_bad_samples.pdf
    Untracked:  output/AfterQC_Proportion_matching_genotypes_before_removal_of_bad_samples.pdf
    Untracked:  output/AfterQC_number_crossover.pdf
    Untracked:  output/Percent_genotype_errors_obs_vs_predicted.pdf
    Untracked:  output/Percent_missing_genotype_data.pdf
    Untracked:  output/Percent_missing_genotype_data_per_marker.pdf
    Untracked:  output/Proportion_matching_genotypes_after_removal_of_bad_samples.pdf
    Untracked:  output/Proportion_matching_genotypes_before_removal_of_bad_samples.pdf
    Untracked:  output/genotype_error_marker.pdf
    Untracked:  output/genotype_frequency_marker.pdf
    Untracked:  output/m1.Novelty_resids_datarelease_07302918.RData
    Untracked:  output/m1.Novelty_residuals_RankNormal_datarelease_07302918.RData
    Untracked:  output/m2.Novelty_resids_datarelease_07302918.RData
    Untracked:  output/m2.Novelty_residuals_RankNormal_datarelease_07302918.RData
    Untracked:  output/num.geno.pheno.in.Novelty_resids_datarelease_07302918.csv
    Untracked:  output/num.geno.pheno.in.Novelty_residuals_RankNormal_datarelease_07302918.csv
    Untracked:  output/number_crossover.pdf
    Untracked:  output/prop_across_generation_chr_p.RData

Unstaged changes:
    Modified:   README.md
    Modified:   _workflowr.yml

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 680f68c xhyuo 2019-09-23 First build

After genotype diagnostics for diversity outbred mice

We first load the R/qtl2 package and the data. We’ll also load the R/broman package for some utilities and plotting functions, and R/qtlcharts for interactive graphs.

library

library(broman)
library(qtl2)
library(qtlcharts)
library(ggplot2)
library(ggrepel)
library(DOQTL)
library(mclust)
source("code/reconst_utils.R")

Missing data per sample

load("data/Jackson_Lab_Bubier_MURGIGV01/gm_DO2437_qc.RData")
gm <- gm_DO2437_qc
gm
Object of class cross2 (crosstype "do")

Total individuals              2437
No. genotyped individuals      2437
No. phenotyped individuals     2437
No. with both geno & pheno     2437

No. phenotypes                    1
No. covariates                    4
No. phenotype covariates          0

No. chromosomes                  20
Total markers                112456

No. markers by chr:
   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
8533 8646 6402 6599 6558 6427 6281 5660 5856 5438 6338 5152 5256 5026 4547 
  16   17   18   19    X 
4356 4321 3987 3102 3971 
percent_missing <- n_missing(gm, "ind", "prop")*100
setScreenSize(height=100, width=300)
Set screen size to height=100 x width=300
labels <- paste0(names(percent_missing), " (", round(percent_missing,2), "%)")
iplot(seq_along(percent_missing), percent_missing, indID=labels,
      chartOpts=list(xlab="Mouse", ylab="Percent missing genotype data",
                     ylim=c(0, 60)))
#save into pdf
pdf(file = "output/AfterQC_Percent_missing_genotype_data.pdf", width = 20, height = 20)
labels <- as.character(do.call(rbind.data.frame, strsplit(ind_ids(gm), "V01_"))[,2])
labels[percent_missing < 5] = ""
# Change point shapes and colors
p <- ggplot(data = data.frame(Mouse=seq_along(percent_missing),  
                         Percent_missing_genotype_data = percent_missing,
                         batch = factor(as.character(do.call(rbind.data.frame, strsplit(ind_ids(gm), "_"))[,5]))), 
        aes(x=Mouse, y=Percent_missing_genotype_data, color = batch)) +
  geom_point() +
  geom_hline(yintercept=5, linetype="solid", color = "red") +
  geom_text_repel(aes(label=labels), vjust = 0, nudge_y = 0.01, show.legend = FALSE, size=3) +
  theme(text = element_text(size = 20))
p
dev.off()
png 
  2 
p

Sexes

xint <- read_csv_numer("data/Jackson_Lab_Bubier_MURGIGV01/Jackson_Lab_Bubier_MURGIGV01_qtl2_chrXint.csv", transpose=TRUE)
yint <- read_csv_numer("data/Jackson_Lab_Bubier_MURGIGV01/Jackson_Lab_Bubier_MURGIGV01_qtl2_chrYint.csv", transpose=TRUE)

#subset to gm subject name
xint <- xint[rownames(xint) %in% rownames(gm$covar),]
yint <- yint[rownames(yint) %in% rownames(gm$covar),]

# Gigamuga marker annotation file from UNC.
gm_marker_file = "http://csbio.unc.edu/MUGA/snps.gigamuga.Rdata" #FIXED
# Read in the UNC GigaMUGA SNPs and clusters.
load(url(gm_marker_file))
#subset down to gm
snps$marker = as.character(snps$marker)
#snp <- snps[snps$marker %in% marker_names(gm),]

#load the intensities.fst.RData
load("data/Jackson_Lab_Bubier_MURGIGV01/intensities.fst.RData")
#X and Y channel
X <- result[result$channel == "X",c("snp","channel",rownames(gm$covar))]
rownames(X) <- X$snp
X <- X[,c(-1,-2)]

Y <- result[result$channel == "Y",c("snp","channel",rownames(gm$covar))]
rownames(Y) <- Y$snp
Y <- Y[,c(-1,-2)]

#determine sex
sex = determine_sex_chry_m(x = X, y = Y, markers = snps)$sex

#sex order
sex <- sex[rownames(xint)]

x_pval <- apply(xint, 2, function(a) t.test(a ~ sex)$p.value)
y_pval <- apply(yint, 2, function(a) t.test(a ~ sex)$p.value)

xint_ave <- rowMeans(xint[, x_pval < 0.05/length(x_pval)], na.rm=TRUE)
yint_ave <- rowMeans(yint[, y_pval < 0.05/length(y_pval)], na.rm=TRUE)

point_colors <- as.character( brocolors("web")[c("green", "purple")] )
labels <- paste0(names(xint_ave))
iplot(xint_ave, yint_ave, group=sex, indID=labels,
      chartOpts=list(pointcolor=point_colors, pointsize=4,
                     xlab="Average X chr intensity", ylab="Average Y chr intensity"))

phetX <- rowSums(gm$geno$X == 2)/rowSums(gm$geno$X != 0)
phetX <- phetX[names(phetX) %in% names(xint_ave)]
iplot(xint_ave, phetX, group=sex, indID=labels,
      chartOpts=list(pointcolor=point_colors, pointsize=4,
                     xlab="Average X chr intensity", ylab="Proportion het on X chr"))

Sample duplicates

cg <- compare_geno(gm, cores=20)
summary.cg <- summary(cg)
summary.cg
summary.cg$Name.ind1 <- as.character(do.call(rbind.data.frame, strsplit(as.character(summary.cg$ind1), "_"))[,6])
summary.cg$Name.ind2 <- as.character(do.call(rbind.data.frame, strsplit(as.character(summary.cg$ind2), "_"))[,6])
summary.cg$miss.ind1 <- percent_missing[match(summary.cg$ind1, names(percent_missing))]
summary.cg$miss.ind2 <- percent_missing[match(summary.cg$ind2, names(percent_missing))]
summary.cg$remove.id <- ifelse(summary.cg$miss.ind1 > summary.cg$miss.ind2, summary.cg$ind1, summary.cg$ind2)
summary.cg$remove.id  

pdf(file = "output/AfterQC_Proportion_matching_genotypes_before_removal_of_bad_samples.pdf", width = 20, height = 20) 
par(mar=c(5.1,0.6,0.6, 0.6))
hist(cg[upper.tri(cg)], breaks=seq(0, 1, length=201),
     main="", yaxt="n", ylab="", xlab="Proportion matching genotypes")
rug(cg[upper.tri(cg)])
dev.off()

par(mar=c(5.1,0.6,0.6, 0.6))
hist(cg[upper.tri(cg)], breaks=seq(0, 1, length=201),
     main="", yaxt="n", ylab="", xlab="Proportion matching genotypes")
rug(cg[upper.tri(cg)])

pdf(file = "output/AfterQC_Proportion_matching_genotypes_after_removal_of_bad_samples.pdf",width = 20, height = 20) 
cgsub <- cg[percent_missing < 5, percent_missing < 5]
par(mar=c(5.1,0.6,0.6, 0.6))
hist(cgsub[upper.tri(cgsub)], breaks=seq(0, 1, length=201),
     main="", yaxt="n", ylab="", xlab="Proportion matching genotypes")
rug(cgsub[upper.tri(cgsub)])
dev.off()

cgsub <- cg[percent_missing < 5, percent_missing < 5]
par(mar=c(5.1,0.6,0.6, 0.6))
hist(cgsub[upper.tri(cgsub)], breaks=seq(0, 1, length=201),
     main="", yaxt="n", ylab="", xlab="Proportion matching genotypes")
rug(cgsub[upper.tri(cgsub)])

#show top 20 samples with missing genotypes
percent_missing <- n_missing(gm, "ind", "prop")*100
round(sort(percent_missing, decreasing=TRUE)[1:20], 1)

Array intensities and Genotype frequencies

int <- result[,c("snp","channel",rownames(gm$covar))]
#rm(result)
int <- int[seq(1, nrow(int), by=2),-(1:2)] + int[-seq(1, nrow(int), by=2),-(1:2)]
int <- int[,intersect(ind_ids(gm), colnames(int))]
n <- names(sort(percent_missing[intersect(ind_ids(gm), colnames(int))], decreasing=TRUE))
iboxplot(log10(t(int[,n])+1), orderByMedian=FALSE, chartOpts=list(ylab="log10(SNP intensity + 1)"))

# Genotype frequencies
g <- do.call("cbind", gm$geno[1:19])
fg <- do.call("cbind", gm$founder_geno[1:19])
g <- g[,colSums(fg==0)==0]
fg <- fg[,colSums(fg==0)==0]
fgn <- colSums(fg==3)

gf_ind <- vector("list", 4)
for(i in 1:4) {
  gf_ind[[i]] <- t(apply(g[,fgn==i], 1, function(a) table(factor(a, 1:3))/sum(a != 0)))
}

par(mfrow=c(4,1), mar=c(0.6, 0.6, 2.6, 0.6))
for(i in 1:4) {
  triplot(c("AA", "AB", "BB"), main=paste0("MAF = ", i, "/8"))
  tripoints(gf_ind[[i]], pch=21, bg="lightblue")
  tripoints(c((1-i/8)^2, 2*i/8*(1-i/8), (i/8)^2), pch=21, bg="violetred")
  
  if(i>=3) { # label mouse with lowest het
    wh <- which(gf_ind[[i]][,2] == min(gf_ind[[i]][,2]))
    tritext(gf_ind[[i]][wh,,drop=FALSE] + c(0.02, -0.02, 0),
            names(wh), adj=c(0, 1))
  }
  
  # label other mice
  if(i==1) {
    lab <- rownames(gf_ind[[i]])[gf_ind[[i]][,2]>0.3]
  }
  else if(i==2) {
    lab <- rownames(gf_ind[[i]])[gf_ind[[i]][,2]>0.48]
  }
  else if(i==3) {
    lab <- rownames(gf_ind[[i]])[gf_ind[[i]][,2]>0.51]
  }
  else if(i==4) {
    lab <- rownames(gf_ind[[i]])[gf_ind[[i]][,2]>0.6]
  }
  
  for(ind in lab) {
    if(grepl("^F", ind) && i != 3) {
      tritext(gf_ind[[i]][ind,,drop=FALSE] + c(-0.01, 0, +0.01), ind, adj=c(1,0.5))
    } else {
      tritext(gf_ind[[i]][ind,,drop=FALSE] + c(0.01, 0, -0.01), ind, adj=c(0,0.5))
    }
  }
}

Crossover counts and Genotyping error LOD scores

#load pre-caluated results
load("data/Jackson_Lab_Bubier_MURGIGV01/nxo.RData")

#crossover
totxo <- rowSums(nxo)[names(rowSums(nxo)) %in% rownames(gm$covar)]
iplot(seq_along(totxo),
      totxo,
      group=gm$covar$ngen,
      chartOpts=list(xlab="Mouse", ylab="Number of crossovers", 
                     margin=list(left=80,top=40,right=40,bottom=40,inner=5),
                     axispos=list(xtitle=25,ytitle=50,xlabel=5,ylabel=5)))

#save crossover into pdf
pdf(file = "output/AfterQC_number_crossover.pdf")
cross_over <- data.frame(Mouse = seq_along(totxo), Number_crossovers = totxo, generation = gm$covar$ngen)
names(totxo) <- as.character(do.call(rbind.data.frame, strsplit(names(totxo), "V01_"))[,2])
names(totxo)[totxo <= 800] = ""
# Change point shapes and colors
p <-ggplot(cross_over, aes(x=Mouse, y=Number_crossovers, fill = generation, color=generation)) +
  geom_point() +
  geom_text_repel(aes(label=names(totxo),hjust=0,vjust=0), show.legend = FALSE)
p
dev.off()

p

sessionInfo()
R version 3.3.2 (2016-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS release 6.5 (Final)

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    parallel  methods   stats     graphics  grDevices utils    
[8] datasets  base     

other attached packages:
 [1] mclust_5.2.1                       DOQTL_1.10.0                      
 [3] VariantAnnotation_1.20.3           Rsamtools_1.26.2                  
 [5] SummarizedExperiment_1.4.0         Biobase_2.34.0                    
 [7] BSgenome.Mmusculus.UCSC.mm10_1.4.0 BSgenome_1.42.0                   
 [9] rtracklayer_1.34.2                 Biostrings_2.42.1                 
[11] XVector_0.14.1                     GenomicRanges_1.26.4              
[13] GenomeInfoDb_1.10.3                IRanges_2.8.2                     
[15] S4Vectors_0.12.2                   BiocGenerics_0.20.0               
[17] ggrepel_0.8.1                      ggplot2_3.1.0                     
[19] qtlcharts_0.9-6                    qtl2_0.18                         
[21] broman_0.68-2                     

loaded via a namespace (and not attached):
 [1] bitops_1.0-6             fs_1.2.6                
 [3] bit64_0.9-7              doParallel_1.0.10       
 [5] rprojroot_1.3-2          prabclus_2.2-6          
 [7] regress_1.3-15           tools_3.3.2             
 [9] backports_1.1.2          R6_2.4.0                
[11] DBI_1.0.0                lazyeval_0.2.1          
[13] colorspace_1.4-0         trimcluster_0.1-2       
[15] annotationTools_1.48.0   nnet_7.3-12             
[17] withr_2.1.2              tidyselect_0.2.5        
[19] bit_1.1-14               git2r_0.23.0            
[21] labeling_0.3             diptest_0.75-7          
[23] scales_1.0.0             QTLRel_1.0              
[25] DEoptimR_1.0-8           mvtnorm_1.0-5           
[27] robustbase_0.92-7        stringr_1.3.1           
[29] digest_0.6.18            rmarkdown_1.11          
[31] pkgconfig_2.0.1          htmltools_0.3.6         
[33] htmlwidgets_1.3          rlang_0.4.0             
[35] RSQLite_2.1.1            jsonlite_1.6            
[37] hwriter_1.3.2            gtools_3.5.0            
[39] BiocParallel_1.8.2       dplyr_0.8.3             
[41] RCurl_1.95-4.12          magrittr_1.5            
[43] modeltools_0.2-21        qtl_1.41-6              
[45] Matrix_1.2-14            Rcpp_1.0.2              
[47] munsell_0.5.0            stringi_1.2.4           
[49] whisker_0.3-2            yaml_2.2.0              
[51] MASS_7.3-50              zlibbioc_1.20.0         
[53] rhdf5_2.18.0             flexmix_2.3-13          
[55] plyr_1.8.4               grid_3.3.2              
[57] blob_1.1.1               gdata_2.18.0            
[59] crayon_1.3.4             lattice_0.20-35         
[61] GenomicFeatures_1.26.2   annotate_1.52.1         
[63] knitr_1.20               pillar_1.3.1            
[65] RUnit_0.4.31             fpc_2.1-10              
[67] corpcor_1.6.9            codetools_0.2-15        
[69] biomaRt_2.30.0           XML_3.98-1.16           
[71] glue_1.3.1               evaluate_0.10           
[73] data.table_1.11.4        foreach_1.4.4           
[75] gtable_0.2.0             purrr_0.3.2             
[77] kernlab_0.9-25           assertthat_0.2.1        
[79] xtable_1.8-2             class_7.3-14            
[81] tibble_2.1.3             iterators_1.0.10        
[83] GenomicAlignments_1.10.1 AnnotationDbi_1.36.2    
[85] memoise_1.1.0            workflowr_1.4.0         
[87] cluster_2.0.7-1