Last updated: 2022-02-25
Checks: 5 2
Knit directory: Serreze-T1D_Workflow/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20220210)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/Users/corneb/Documents/MyJax/CS/Projects/Serreze/qc/workflowr/Serreze-T1D_Workflow | . |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 2cccbf3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Untracked files:
Untracked: analysis/genotype.frequencies_ici.vs.eoi.Rmd
Untracked: analysis/genotype.frequencies_ici.vs.pbs.Rmd
Untracked: data/GM_covar.csv
Untracked: data/bad_markers_all_4.batches.RData
Untracked: data/covar_cleaned_ici.vs.eoi.csv
Untracked: data/covar_cleaned_ici.vs.pbs.csv
Untracked: data/covar_corrected.cleaned_ici.vs.eoi.csv
Untracked: data/covar_corrected.cleaned_ici.vs.eoi1.csv
Untracked: data/covar_corrected.cleaned_ici.vs.pbs.csv
Untracked: data/covar_corrected.cleaned_ici.vs.pbs1.csv
Untracked: data/covar_corrected_ici.vs.eoi.csv
Untracked: data/covar_corrected_ici.vs.eoi1.csv
Untracked: data/covar_corrected_ici.vs.pbs.csv
Untracked: data/covar_corrected_ici.vs.pbs1.csv
Untracked: data/e.RData
Untracked: data/e_snpg_samqc_4.batches.RData
Untracked: data/e_snpg_samqc_4.batches_bc.RData
Untracked: data/errors_ind_4.batches.RData
Untracked: data/errors_ind_4.batches_bc.RData
Untracked: data/genetic_map.csv
Untracked: data/genotype_errors_marker_4.batches.RData
Untracked: data/genotype_freq_marker_4.batches.RData
Untracked: data/gm_allqc_4.batches.RData
Untracked: data/gm_samqc_3.batches.RData
Untracked: data/gm_samqc_4.batches.RData
Untracked: data/gm_samqc_4.batches_bc.RData
Untracked: data/gm_serreze.192.RData
Untracked: data/ici.vs.eoi_sample.genos_marker.freq_low.geno.freq.removed.csv
Untracked: data/ici.vs.eoi_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed.csv
Untracked: data/ici.vs.eoi_sample.genos_marker.freq_low.probs.freq.removed.csv
Untracked: data/ici.vs.eoi_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed.csv
Untracked: data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed.csv
Untracked: data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed.csv
Untracked: data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed.csv
Untracked: data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed.csv
Untracked: data/percent_missing_id_3.batches.RData
Untracked: data/percent_missing_id_4.batches.RData
Untracked: data/percent_missing_id_4.batches_bc.RData
Untracked: data/percent_missing_marker_4.batches.RData
Untracked: data/pheno.csv
Untracked: data/physical_map.csv
Untracked: data/qc_info_bad_sample_3.batches.RData
Untracked: data/qc_info_bad_sample_4.batches.RData
Untracked: data/qc_info_bad_sample_4.batches_bc.RData
Untracked: data/remaining.markers_geno.freq.xlsx
Untracked: data/sample_geno.csv
Untracked: data/sample_geno_bc.csv
Untracked: data/serreze_probs.rds
Untracked: data/serreze_probs_allqc.rds
Untracked: data/summary.cg_3.batches.RData
Untracked: data/summary.cg_4.batches.RData
Untracked: data/summary.cg_4.batches_bc.RData
Unstaged changes:
Modified: analysis/index.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with wflow_publish()
to start tracking its development.
load("data/gm_allqc_4.batches.RData")
#gm_allqc
gm=gm_allqc
gm
Object of class cross2 (crosstype "bc")
Total individuals 188
No. genotyped individuals 188
No. phenotyped individuals 188
No. with both geno & pheno 188
No. phenotypes 1
No. covariates 6
No. phenotype covariates 0
No. chromosomes 20
Total markers 131578
No. markers by chr:
1 2 3 4 5 6 7 8 9 10 11 12 13
9977 10005 7858 7589 7621 7758 7413 6472 6725 6396 7154 6137 6085
14 15 16 17 18 19 X
5981 5346 5019 5093 4607 3564 4778
pr <- readRDS("data/serreze_probs_allqc.rds")
#pr <- readRDS("data/serreze_probs.rds")
geno <- read.csv("/Users/corneb/Documents/MyJax/CS/Projects/Serreze/haplotype.reconstruction/output_hh/sample_geno_bc.csv", as.is=T)
names(geno) <- gsub("\\.","-",names(geno))
rownames(geno) <- geno$marker
## extracting animals with ici and pbs group status
miceinfo <- gm$covar[gm$covar$group == "PBS" | gm$covar$group == "ICI",]
table(miceinfo$group)
ICI PBS
92 21
mice.ids <- rownames(miceinfo)
gm <- gm[mice.ids]
gm
Object of class cross2 (crosstype "bc")
Total individuals 113
No. genotyped individuals 113
No. phenotyped individuals 113
No. with both geno & pheno 113
No. phenotypes 1
No. covariates 6
No. phenotype covariates 0
No. chromosomes 20
Total markers 131578
No. markers by chr:
1 2 3 4 5 6 7 8 9 10 11 12 13
9977 10005 7858 7589 7621 7758 7413 6472 6725 6396 7154 6137 6085
14 15 16 17 18 19 X
5981 5346 5019 5093 4607 3564 4778
table(gm$covar$group)
ICI PBS
92 21
covars <- read_csv("data/covar_corrected_ici.vs.pbs.csv")
# removing any missing info
#covars <- subset(covars, covars$age.of.onset!='')
nrow(covars)
[1] 113
table(covars$group)
ICI PBS
92 21
# keeping only informative mice
gm <- gm[covars$Mouse.ID]
gm
Object of class cross2 (crosstype "bc")
Total individuals 113
No. genotyped individuals 113
No. phenotyped individuals 113
No. with both geno & pheno 113
No. phenotypes 1
No. covariates 6
No. phenotype covariates 0
No. chromosomes 20
Total markers 131578
No. markers by chr:
1 2 3 4 5 6 7 8 9 10 11 12 13
9977 10005 7858 7589 7621 7758 7413 6472 6725 6396 7154 6137 6085
14 15 16 17 18 19 X
5981 5346 5019 5093 4607 3564 4778
table(gm$covar$group)
ICI PBS
92 21
pr.qc.ids <- pr
for (i in 1:20){pr.qc.ids[[i]] = pr.qc.ids[[i]][covars$Mouse.ID,,]}
geno <- geno[,covars$Mouse.ID]
geno <- geno[marker_names(gm),]
dim(geno)
[1] 131578 113
## calculating genotype frequencies
### from geno genotypes
g <- do.call("cbind", gm$geno)
gf_mar_geno <- t(apply(g, 2, function(a) table(factor(a, 1:2))/sum(a != 0)))
gn_mar_geno <- t(apply(g, 2, function(a) table(factor(a, 0:2))))
#gf_mar_raw<- gf_mar_raw[gf_mar_raw[,2] != "NaN",]
colnames(gf_mar_geno) <- c("freq_AA_geno_table","freq_AB_geno_table")
colnames(gn_mar_geno) <- c("count_missing_geno_table","count_AA_geno_table","count_AB_geno_table")
gfn_mar_geno <- merge(as.data.frame(gn_mar_geno), as.data.frame(gf_mar_geno), by="row.names")
rownames(gfn_mar_geno) <- gfn_mar_geno[,1]
gfn_mar_geno <- gfn_mar_geno[-1]
### from raw using table function in R
#genosl <- list()
#for(i in 1:nrow(geno)){
##for(i in 1:3){
# genoi <- geno[i,]
# freqf <- table(factor(geno[i,], c("-","AA","AB")))
# genoi$count_AA_raw_rowSums <- rowSums(genoi == "AA")
# genoi$count_AB_raw_rowSums <- rowSums(genoi == "AB")
# genoi$count_missing_raw_rowSums <- rowSums(genoi == "-")
# freqf <- t(table(factor(geno[i,], c("-","AA","AB"))))
# freqf <- as.data.frame(t(freqf[1,]))
# rownames(freqf) <- rownames(genoi)
# colnames(freqf) <- c("count_missing_raw_table","count_AA_raw_table","count_AB_raw_table")
# genoif <- cbind(freqf,genoi[c("count_AA_raw_rowSums","count_AB_raw_rowSums","count_missing_raw_rowSums")])
# genosl[[i]] = genoif
#}
#gf_mar_raw <- do.call("rbind",genosl)
#gf_mar_raw <- gf_mar_raw[,c(1:3,6,4:5)]
#gf_mar_raw$index <- 1:nrow(gf_mar_raw)
### from probabilities
gf_mar_probs.1 <- calc_geno_freq(pr.qc.ids, by = "marker", omit_x = FALSE)
#gn_mar_probs <- calc_geno_freq(probs, by = "individual", omit_x = FALSE)
gf_mar_probs <- rbind(gf_mar_probs.1$A[,1:2], gf_mar_probs.1$X[,1:2])
colnames(gf_mar_probs) <- paste0("freq_",colnames(gf_mar_probs),"_probs")
gf_mar_probs <- as.data.frame(gf_mar_probs)
gf_mar_probs$index <- 1:nrow(gf_mar_probs)
### merging all genotype frequecies for all markers
#gf_mar.1 <- merge(as.data.frame(gf_mar_raw), as.data.frame(gfn_mar_geno), by="row.names")
#rownames(gf_mar.1) <- gf_mar.1[,1]
#gf_mar.1 <- gf_mar.1[-1]
#gf_mar <- merge(gf_mar.1,as.data.frame(gf_mar_probs), by="row.names")
gf_mar <- merge(as.data.frame(gfn_mar_geno),as.data.frame(gf_mar_probs), by="row.names")
rownames(gf_mar) <- gf_mar[,1]
gf_mar <- gf_mar[-1]
gf_mar <- gf_mar[order(gf_mar$index),]
dim(gf_mar)
[1] 131578 8
# Calculating ratio and flagging informative marker
gf_mar$ratio = as.numeric(gf_mar$freq_AA_geno_table)/as.numeric(gf_mar$freq_AB_geno_table)
gf_mar$Include = ifelse(gf_mar$ratio >= 0.90 & gf_mar$ratio <= 1.10, TRUE,FALSE)
table(gf_mar$Include)
FALSE TRUE
122652 8926
## filtering out <= 0.05
gf_mar$count.geno <- rowSums(gf_mar[c("freq_AA_geno_table","freq_AB_geno_table")] <=0.05)
filtered_gf_mar_geno <- gf_mar[gf_mar$count.geno != 1,]
filtered_gf_mar_geno <- filtered_gf_mar_geno[,-which(names(filtered_gf_mar_geno) %in% c("count.geno","index"))]
dim(filtered_gf_mar_geno)
[1] 33368 9
table(filtered_gf_mar_geno$Include)
FALSE TRUE
24442 8926
gf_mar$count.probs <- rowSums(gf_mar[c("freq_AA_probs","freq_AB_probs")] <=0.05)
filtered_gf_mar_probs <- gf_mar[gf_mar$count.probs != 1,]
filtered_gf_mar_probs <- filtered_gf_mar_probs[,-which(names(filtered_gf_mar_probs) %in% c("count.geno","count.probs","index"))]
dim(filtered_gf_mar_probs)
[1] 33233 9
table(filtered_gf_mar_probs$Include)
FALSE TRUE
26228 7005
## merging with sample_genos
#filtered_gf_mar_geno_sample <- merge(geno,filtered_gf_mar_geno, by="row.names", all.y=T)
#filtered_gf_mar_geno_sample <- filtered_gf_mar_geno_sample[order(filtered_gf_mar_geno_sample$index),]
#filtered_gf_mar_geno_sample <- filtered_gf_mar_geno_sample[,-which(names(filtered_gf_mar_geno_sample) %in% c("count.geno","index"))]
#names(filtered_gf_mar_geno_sample)[1] <- c("marker")
#dim(filtered_gf_mar_geno_sample)
#filtered_gf_mar_probs_sample <- merge(geno,filtered_gf_mar_probs, by="row.names", all.y=T)
#filtered_gf_mar_probs_sample <- filtered_gf_mar_probs_sample[order(filtered_gf_mar_probs_sample$index),]
#filtered_gf_mar_probs_sample <- filtered_gf_mar_probs_sample[,-which(names(filtered_gf_mar_probs_sample) %in% c("count.geno","count.probs","index"))]
#names(filtered_gf_mar_probs_sample)[1] <- c("marker")
#dim(filtered_gf_mar_probs_sample)
## saving files
#write.csv(filtered_gf_mar_geno_sample, "data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed.csv", quote=F)
#write.csv(filtered_gf_mar_probs_sample, "data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed.csv", quote=F)
write.csv(filtered_gf_mar_geno, "data/ici.vs.pbs_marker.freq_low.geno.freq.removed_geno.ratio.csv", quote=F)
write.csv(filtered_gf_mar_probs, "data/ici.vs.pbs_marker.freq_low.probs.freq.removed_geno.ratio.csv", quote=F)
load("data/gm_allqc_4.batches.RData")
#gm_allqc
gm=gm_allqc
gm
Object of class cross2 (crosstype "bc")
Total individuals 188
No. genotyped individuals 188
No. phenotyped individuals 188
No. with both geno & pheno 188
No. phenotypes 1
No. covariates 6
No. phenotype covariates 0
No. chromosomes 20
Total markers 131578
No. markers by chr:
1 2 3 4 5 6 7 8 9 10 11 12 13
9977 10005 7858 7589 7621 7758 7413 6472 6725 6396 7154 6137 6085
14 15 16 17 18 19 X
5981 5346 5019 5093 4607 3564 4778
pr <- readRDS("data/serreze_probs_allqc.rds")
#pr <- readRDS("data/serreze_probs.rds")
geno <- read.csv("/Users/corneb/Documents/MyJax/CS/Projects/Serreze/haplotype.reconstruction/output_hh/sample_geno_bc.csv", as.is=T)
names(geno) <- gsub("\\.","-",names(geno))
rownames(geno) <- geno$marker
## extracting animals with ici and pbs group status
miceinfo <- gm$covar[gm$covar$group == "PBS" | gm$covar$group == "ICI",]
table(miceinfo$group)
ICI PBS
92 21
mice.ids <- rownames(miceinfo)
gm <- gm[mice.ids]
gm
Object of class cross2 (crosstype "bc")
Total individuals 113
No. genotyped individuals 113
No. phenotyped individuals 113
No. with both geno & pheno 113
No. phenotypes 1
No. covariates 6
No. phenotype covariates 0
No. chromosomes 20
Total markers 131578
No. markers by chr:
1 2 3 4 5 6 7 8 9 10 11 12 13
9977 10005 7858 7589 7621 7758 7413 6472 6725 6396 7154 6137 6085
14 15 16 17 18 19 X
5981 5346 5019 5093 4607 3564 4778
table(gm$covar$group)
ICI PBS
92 21
covars <- read_csv("data/covar_corrected.cleaned_ici.vs.pbs.csv")
# removing any missing info
covars <- subset(covars, covars$age.of.onset!='')
nrow(covars)
[1] 111
table(covars$group)
ICI PBS
92 19
# keeping only informative mice
gm <- gm[covars$Mouse.ID]
gm
Object of class cross2 (crosstype "bc")
Total individuals 111
No. genotyped individuals 111
No. phenotyped individuals 111
No. with both geno & pheno 111
No. phenotypes 1
No. covariates 6
No. phenotype covariates 0
No. chromosomes 20
Total markers 131578
No. markers by chr:
1 2 3 4 5 6 7 8 9 10 11 12 13
9977 10005 7858 7589 7621 7758 7413 6472 6725 6396 7154 6137 6085
14 15 16 17 18 19 X
5981 5346 5019 5093 4607 3564 4778
table(gm$covar$group)
ICI PBS
92 19
pr.qc.ids <- pr
for (i in 1:20){pr.qc.ids[[i]] = pr.qc.ids[[i]][covars$Mouse.ID,,]}
geno <- geno[,covars$Mouse.ID]
geno <- geno[marker_names(gm),]
dim(geno)
[1] 131578 111
## calculating genotype frequencies
### from geno genotypes
g <- do.call("cbind", gm$geno)
gf_mar_geno <- t(apply(g, 2, function(a) table(factor(a, 1:2))/sum(a != 0)))
gn_mar_geno <- t(apply(g, 2, function(a) table(factor(a, 0:2))))
#gf_mar_raw<- gf_mar_raw[gf_mar_raw[,2] != "NaN",]
colnames(gf_mar_geno) <- c("freq_AA_geno_table","freq_AB_geno_table")
colnames(gn_mar_geno) <- c("count_missing_geno_table","count_AA_geno_table","count_AB_geno_table")
gfn_mar_geno <- merge(as.data.frame(gn_mar_geno), as.data.frame(gf_mar_geno), by="row.names")
rownames(gfn_mar_geno) <- gfn_mar_geno[,1]
gfn_mar_geno <- gfn_mar_geno[-1]
### from raw using table function in R
#genosl <- list()
#for(i in 1:nrow(geno)){
##for(i in 1:3){
# genoi <- geno[i,]
# freqf <- table(factor(geno[i,], c("-","AA","AB")))
# genoi$count_AA_raw_rowSums <- rowSums(genoi == "AA")
# genoi$count_AB_raw_rowSums <- rowSums(genoi == "AB")
# genoi$count_missing_raw_rowSums <- rowSums(genoi == "-")
# freqf <- t(table(factor(geno[i,], c("-","AA","AB"))))
# freqf <- as.data.frame(t(freqf[1,]))
# rownames(freqf) <- rownames(genoi)
# colnames(freqf) <- c("count_missing_raw_table","count_AA_raw_table","count_AB_raw_table")
# genoif <- cbind(freqf,genoi[c("count_AA_raw_rowSums","count_AB_raw_rowSums","count_missing_raw_rowSums")])
# genosl[[i]] = genoif
#}
#gf_mar_raw <- do.call("rbind",genosl)
#gf_mar_raw <- gf_mar_raw[,c(1:3,6,4:5)]
#gf_mar_raw$index <- 1:nrow(gf_mar_raw)
### from probabilities
gf_mar_probs.1 <- calc_geno_freq(pr.qc.ids, by = "marker", omit_x = FALSE)
#gn_mar_probs <- calc_geno_freq(probs, by = "individual", omit_x = FALSE)
gf_mar_probs <- rbind(gf_mar_probs.1$A[,1:2], gf_mar_probs.1$X[,1:2])
colnames(gf_mar_probs) <- paste0("freq_",colnames(gf_mar_probs),"_probs")
gf_mar_probs <- as.data.frame(gf_mar_probs)
gf_mar_probs$index <- 1:nrow(gf_mar_probs)
### merging all genotype frequecies for all markers
#gf_mar.1 <- merge(as.data.frame(gf_mar_raw), as.data.frame(gfn_mar_geno), by="row.names")
#rownames(gf_mar.1) <- gf_mar.1[,1]
#gf_mar.1 <- gf_mar.1[-1]
#gf_mar <- merge(gf_mar.1,as.data.frame(gf_mar_probs), by="row.names")
gf_mar <- merge(as.data.frame(gfn_mar_geno),as.data.frame(gf_mar_probs), by="row.names")
rownames(gf_mar) <- gf_mar[,1]
gf_mar <- gf_mar[-1]
gf_mar <- gf_mar[order(gf_mar$index),]
dim(gf_mar)
[1] 131578 8
# Calculating ratio and flagging informative marker
gf_mar$ratio = as.numeric(gf_mar$freq_AA_geno_table)/as.numeric(gf_mar$freq_AB_geno_table)
gf_mar$Include = ifelse(gf_mar$ratio >= 0.90 & gf_mar$ratio <= 1.10, TRUE,FALSE)
table(gf_mar$Include)
FALSE TRUE
122863 8715
## filtering out <= 0.05
gf_mar$count.geno <- rowSums(gf_mar[c("freq_AA_geno_table","freq_AB_geno_table")] <=0.05)
filtered_gf_mar_geno <- gf_mar[gf_mar$count.geno != 1,]
filtered_gf_mar_geno <- filtered_gf_mar_geno[,-which(names(filtered_gf_mar_geno) %in% c("count.geno","index"))]
dim(filtered_gf_mar_geno)
[1] 33287 9
table(filtered_gf_mar_geno$Include)
FALSE TRUE
24572 8715
gf_mar$count.probs <- rowSums(gf_mar[c("freq_AA_probs","freq_AB_probs")] <=0.05)
filtered_gf_mar_probs <- gf_mar[gf_mar$count.probs != 1,]
filtered_gf_mar_probs <- filtered_gf_mar_probs[,-which(names(filtered_gf_mar_probs) %in% c("count.geno","count.probs","index"))]
dim(filtered_gf_mar_probs)
[1] 33240 9
table(filtered_gf_mar_probs$Include)
FALSE TRUE
26427 6813
## merging with sample_genos
#filtered_gf_mar_geno_sample <- merge(geno,filtered_gf_mar_geno, by="row.names", all.y=T)
#filtered_gf_mar_geno_sample <- filtered_gf_mar_geno_sample[order(filtered_gf_mar_geno_sample$index),]
#filtered_gf_mar_geno_sample <- filtered_gf_mar_geno_sample[,-which(names(filtered_gf_mar_geno_sample) %in% c("count.geno","index"))]
#names(filtered_gf_mar_geno_sample)[1] <- c("marker")
#dim(filtered_gf_mar_geno_sample)
#filtered_gf_mar_probs_sample <- merge(geno,filtered_gf_mar_probs, by="row.names", all.y=T)
#filtered_gf_mar_probs_sample <- filtered_gf_mar_probs_sample[order(filtered_gf_mar_probs_sample$index),]
#filtered_gf_mar_probs_sample <- filtered_gf_mar_probs_sample[,-which(names(filtered_gf_mar_probs_sample) %in% c("count.geno","count.probs","index"))]
#names(filtered_gf_mar_probs_sample)[1] <- c("marker")
#dim(filtered_gf_mar_probs_sample)
## saving files
#write.csv(filtered_gf_mar_geno_sample, "data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed.csv", quote=F)
#write.csv(filtered_gf_mar_probs_sample, "data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed.csv", quote=F)
write.csv(filtered_gf_mar_geno, "data/ici.vs.pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio.csv", quote=F)
write.csv(filtered_gf_mar_probs, "data/ici.vs.pbs_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio.csv", quote=F)
R version 3.6.2 (2019-12-12)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Catalina 10.15.7
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
locale:
[1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] abind_1.4-5 qtl2_0.22 reshape2_1.4.4 ggplot2_3.3.5
[5] tibble_3.1.2 psych_2.0.7 readxl_1.3.1 cluster_2.1.0
[9] dplyr_0.8.5 optparse_1.6.6 rhdf5_2.28.1 mclust_5.4.6
[13] tidyr_1.0.2 data.table_1.14.0 knitr_1.33 kableExtra_1.1.0
[17] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] httr_1.4.1 bit64_4.0.5 viridisLite_0.4.0 assertthat_0.2.1
[5] highr_0.9 blob_1.2.1 cellranger_1.1.0 yaml_2.2.1
[9] pillar_1.6.1 RSQLite_2.2.7 backports_1.2.1 lattice_0.20-38
[13] glue_1.4.2 digest_0.6.27 promises_1.1.0 rvest_0.3.5
[17] colorspace_2.0-2 htmltools_0.5.1.1 httpuv_1.5.2 plyr_1.8.6
[21] pkgconfig_2.0.3 purrr_0.3.4 scales_1.1.1 webshot_0.5.2
[25] getopt_1.20.3 later_1.0.0 git2r_0.26.1 ellipsis_0.3.2
[29] cachem_1.0.5 withr_2.4.2 mnormt_1.5-7 magrittr_2.0.1
[33] crayon_1.4.1 memoise_2.0.0 evaluate_0.14 fs_1.4.1
[37] fansi_0.5.0 nlme_3.1-142 xml2_1.3.1 tools_3.6.2
[41] hms_0.5.3 lifecycle_1.0.0 stringr_1.4.0 Rhdf5lib_1.6.3
[45] munsell_0.5.0 compiler_3.6.2 rlang_0.4.11 grid_3.6.2
[49] rstudioapi_0.13 rmarkdown_2.1 gtable_0.3.0 DBI_1.1.1
[53] R6_2.5.0 fastmap_1.1.0 bit_4.0.4 utf8_1.2.1
[57] rprojroot_1.3-2 readr_1.3.1 stringi_1.7.2 parallel_3.6.2
[61] Rcpp_1.0.7 vctrs_0.3.8 tidyselect_1.0.0 xfun_0.24