Last updated: 2023-01-24

Checks: 5 2

Knit directory: Serreze-T1D_Workflow/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220210) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/Users/corneb/Documents/MyJax/CS/Projects/Serreze/qc/workflowr/Serreze-T1D_Workflow .

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version c9fc66b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    analysis/.DS_Store

Untracked files:
    Untracked:  analysis/0.1.1_preparing.data_bqc_4.batches_myo.Rmd
    Untracked:  analysis/0.1.1_preparing.data_bqc_4.batches_myo.Rmd.R
    Untracked:  analysis/0.1_samples_batch_20220729.Rmd
    Untracked:  analysis/0.1_samples_batch_20220729.Rmd.R
    Untracked:  analysis/0.1_samples_batch_20220826.Rmd
    Untracked:  analysis/0.1_samples_batch_20220826.Rmd.R
    Untracked:  analysis/0.1_samples_batch_20221006.Rmd
    Untracked:  analysis/0.1_samples_batch_20221006.Rmd.R
    Untracked:  analysis/0.1_samples_batch_20221116.Rmd
    Untracked:  analysis/0.1_samples_batch_20221116.Rmd.R
    Untracked:  analysis/0.2_haplotype_comparison_bqc_4.batches_myo_minprob.Rmd
    Untracked:  analysis/0.2_haplotype_comparison_bqc_4.batches_myo_minprob.Rmd.R
    Untracked:  analysis/2.1_sample_bqc_4.batches_myo.Rmd
    Untracked:  analysis/2.1_sample_bqc_4.batches_myo.Rmd.R
    Untracked:  analysis/2.2.1_snp_qc_4.batches_myo.Rmd
    Untracked:  analysis/2.2.1_snp_qc_4.batches_myo.Rmd.R
    Untracked:  analysis/2.2.1_snp_qc_4.batches_myo_mis.Rmd
    Untracked:  analysis/2.2.1_snp_qc_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/2.4_preparing.data_aqc_4.batches_myo.Rmd
    Untracked:  analysis/2.4_preparing.data_aqc_4.batches_myo.Rmd.R
    Untracked:  analysis/2.4_preparing.data_aqc_4.batches_myo_mis.Rmd
    Untracked:  analysis/2.4_preparing.data_aqc_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/3.1_phenotype.qc_corrected_4.batches_myo.Rmd
    Untracked:  analysis/3.1_phenotype.qc_corrected_4.batches_myo.Rmd.R
    Untracked:  analysis/3.1_phenotype.qc_corrected_4.batches_myo_mis.Rmd
    Untracked:  analysis/3.1_phenotype.qc_corrected_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici-myo-yes.vs.het-ici-myo-no_snpsqc_dis_no-x_updated_4.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici-myo-yes.vs.het-ici-myo-no_snpsqc_dis_no-x_updated_4.batches_myo.Rmd.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici-myo-yes.vs.het-ici-myo-no_snpsqc_dis_no-x_updated_4.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici.vs.het-pbs_snpsqc_dis_no-x_updated_4.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici.vs.het-pbs_snpsqc_dis_no-x_updated_4.batches_myo.Rmd.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici.vs.het-pbs_snpsqc_dis_no-x_updated_4.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-myo-yes.vs.ici-myo-no_snpsqc_dis_no-x_updated_4.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-myo-yes.vs.ici-myo-no_snpsqc_dis_no-x_updated_4.batches_myo.Rmd.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-myo-yes.vs.ici-myo-no_snpsqc_dis_no-x_updated_4.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-sick.vs.ici-eoi_snpsqc_dis_no-x_updated_4.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-sick.vs.ici-eoi_snpsqc_dis_no-x_updated_4.batches_myo.Rmd.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-sick.vs.ici-eoi_snpsqc_dis_no-x_updated_4.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs_snpsqc_dis_no-x_updated_4.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs_snpsqc_dis_no-x_updated_4.batches_myo.Rmd.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs_snpsqc_dis_no-x_updated_4.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs_snpsqc_dis_no-x_updated_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs_snpsqc_dis_no-x_updated_4.batches_myo_mis1.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_myo-yes.vs.myo-no_snpsqc_dis_no-x_updated_4.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_myo-yes.vs.myo-no_snpsqc_dis_no-x_updated_4.batches_myo.Rmd.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_myo-yes.vs.myo-no_snpsqc_dis_no-x_updated_4.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_pbs-myo-yes.vs.pbs-myo-no_snpsqc_dis_no-x_updated_4.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_pbs-myo-yes.vs.pbs-myo-no_snpsqc_dis_no-x_updated_4.batches_myo.Rmd.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_pbs-myo-yes.vs.pbs-myo-no_snpsqc_dis_no-x_updated_4.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_pbs-myo-yes.vs.pbs-myo-no_snpsqc_dis_no-x_updated_4.batches_myo_misRmd.Rmd
    Untracked:  analysis/genotype.frequencies_het-ici-myo-yes.vs.het-ici-myo-no_4.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_het-ici-myo-yes.vs.het-ici-myo-no_4.batches_myo.Rmd.R
    Untracked:  analysis/genotype.frequencies_het-ici-myo-yes.vs.het-ici-myo-no_4.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_het-ici-myo-yes.vs.het-ici-myo-no_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/genotype.frequencies_het-ici.vs.het-pbs_4.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_het-ici.vs.het-pbs_4.batches_myo.Rmd.R
    Untracked:  analysis/genotype.frequencies_het-ici.vs.het-pbs_4.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_het-ici.vs.het-pbs_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/genotype.frequencies_ici-myo-yes.vs.ici-myo-no_4.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_ici-myo-yes.vs.ici-myo-no_4.batches_myo.Rmd.R
    Untracked:  analysis/genotype.frequencies_ici-myo-yes.vs.ici-myo-no_4.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_ici-myo-yes.vs.ici-myo-no_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/genotype.frequencies_ici-sick.vs.ici-eoi_4.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_ici-sick.vs.ici-eoi_4.batches_myo.Rmd.R
    Untracked:  analysis/genotype.frequencies_ici-sick.vs.ici-eoi_4.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_ici-sick.vs.ici-eoi_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/genotype.frequencies_ici.vs.pbs_4.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_ici.vs.pbs_4.batches_myo.Rmd.R
    Untracked:  analysis/genotype.frequencies_ici.vs.pbs_4.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_ici.vs.pbs_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/genotype.frequencies_myo-yes.vs.myo-no_4.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_myo-yes.vs.myo-no_4.batches_myo.Rmd.R
    Untracked:  analysis/genotype.frequencies_myo-yes.vs.myo-no_4.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_myo-yes.vs.myo-no_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/genotype.frequencies_pbs-myo-yes.vs.pbs-myo-no_4.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_pbs-myo-yes.vs.pbs-myo-no_4.batches_myo.Rmd.R
    Untracked:  analysis/genotype.frequencies_pbs-myo-yes.vs.pbs-myo-no_4.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_pbs-myo-yes.vs.pbs-myo-no_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/index_4.batches_myo.Rmd
    Untracked:  analysis/index_4.batches_myo.Rmd.R
    Untracked:  analysis/power.analysis_het-ici-myo-yes.vs.het-ici-myo-no_4.batches_myo.Rmd
    Untracked:  analysis/power.analysis_het-ici-myo-yes.vs.het-ici-myo-no_4.batches_myo.Rmd.R
    Untracked:  analysis/power.analysis_het-ici-myo-yes.vs.het-ici-myo-no_4.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_het-ici-myo-yes.vs.het-ici-myo-no_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/power.analysis_het-ici.vs.het-pbs_4.batches_myo.Rmd
    Untracked:  analysis/power.analysis_het-ici.vs.het-pbs_4.batches_myo.Rmd.R
    Untracked:  analysis/power.analysis_het-ici.vs.het-pbs_4.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_het-ici.vs.het-pbs_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/power.analysis_ici-myo-yes.vs.ici-myo-no_4.batches_myo.Rmd
    Untracked:  analysis/power.analysis_ici-myo-yes.vs.ici-myo-no_4.batches_myo.Rmd.R
    Untracked:  analysis/power.analysis_ici-myo-yes.vs.ici-myo-no_4.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_ici-myo-yes.vs.ici-myo-no_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/power.analysis_ici-sick.vs.ici-eoi_4.batches_myo.Rmd
    Untracked:  analysis/power.analysis_ici-sick.vs.ici-eoi_4.batches_myo.Rmd.R
    Untracked:  analysis/power.analysis_ici-sick.vs.ici-eoi_4.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_ici-sick.vs.ici-eoi_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/power.analysis_ici.vs.pbs_4.batches_myo.R
    Untracked:  analysis/power.analysis_ici.vs.pbs_4.batches_myo.Rmd
    Untracked:  analysis/power.analysis_ici.vs.pbs_4.batches_myo.Rmd.R
    Untracked:  analysis/power.analysis_ici.vs.pbs_4.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_ici.vs.pbs_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/power.analysis_myo-yes.vs.myo-no_4.batches_myo.Rmd
    Untracked:  analysis/power.analysis_myo-yes.vs.myo-no_4.batches_myo.Rmd.R
    Untracked:  analysis/power.analysis_myo-yes.vs.myo-no_4.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_myo-yes.vs.myo-no_4.batches_myo_mis.Rmd.R
    Untracked:  analysis/power.analysis_pbs-myo-yes.vs.pbs-myo-no_4.batches_myo copy.Rmd.R
    Untracked:  analysis/power.analysis_pbs-myo-yes.vs.pbs-myo-no_4.batches_myo.Rmd
    Untracked:  analysis/power.analysis_pbs-myo-yes.vs.pbs-myo-no_4.batches_myo.Rmd.R
    Untracked:  analysis/power.analysis_pbs-myo-yes.vs.pbs-myo-no_4.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_pbs-myo-yes.vs.pbs-myo-no_4.batches_myo_mis.Rmd.R
    Untracked:  data copy/
    Untracked:  data/GM_covar_4.batches_myo.csv
    Untracked:  data/bad_markers_all_4.batches_myo.RData
    Untracked:  data/covar_corrected.cleaned_het-ici-myo-yes.vs.het-ici-myo-no_4.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_het-ici-myo-yes.vs.het-ici-myo-no_4.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_het-ici.vs.het-pbs_4.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_het-ici.vs.het-pbs_4.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_ici-myo-yes.vs.ici-myo-no_4.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_ici-myo-yes.vs.ici-myo-no_4.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_ici-sick.vs.ici-eoi_4.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_ici-sick.vs.ici-eoi_4.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_ici.vs.pbs_4.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_ici.vs.pbs_4.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_myo-yes.vs.myo-no_4.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_myo-yes.vs.myo-no_4.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_pbs-myo-yes.vs.pbs-myo-no_4.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_pbs-myo-yes.vs.pbs-myo-no_4.batches_myo_mis.csv
    Untracked:  data/covar_corrected_het-ici-myo-yes.vs.het-ici-myo-no_4.batches_myo.csv
    Untracked:  data/covar_corrected_het-ici-myo-yes.vs.het-ici-myo-no_4.batches_myo_mis.csv
    Untracked:  data/covar_corrected_het-ici.vs.het-pbs_4.batches_myo.csv
    Untracked:  data/covar_corrected_het-ici.vs.het-pbs_4.batches_myo_mis.csv
    Untracked:  data/covar_corrected_ici-myo-yes.vs.ici-myo-no_4.batches_myo.csv
    Untracked:  data/covar_corrected_ici-myo-yes.vs.ici-myo-no_4.batches_myo_mis.csv
    Untracked:  data/covar_corrected_ici-sick.vs.ici-eoi_4.batches_myo.csv
    Untracked:  data/covar_corrected_ici-sick.vs.ici-eoi_4.batches_myo_mis.csv
    Untracked:  data/covar_corrected_ici.vs.pbs_4.batches_myo.csv
    Untracked:  data/covar_corrected_ici.vs.pbs_4.batches_myo_mis.csv
    Untracked:  data/covar_corrected_myo-yes.vs.myo-no_4.batches_myo.csv
    Untracked:  data/covar_corrected_myo-yes.vs.myo-no_4.batches_myo_mis.csv
    Untracked:  data/covar_corrected_pbs-myo-yes.vs.pbs-myo-no_4.batches_myo.csv
    Untracked:  data/covar_corrected_pbs-myo-yes.vs.pbs-myo-no_4.batches_myo_mis.csv
    Untracked:  data/e_4.batches_myo.RData
    Untracked:  data/e_snpg_samqc_4.batches_myo.RData
    Untracked:  data/errors_ind_4.batches_myo.RData
    Untracked:  data/genetic_map_4.batches_myo.csv
    Untracked:  data/genotype_errors_marker_4.batches_myo.RData
    Untracked:  data/genotype_freq_marker_4.batches_myo.RData
    Untracked:  data/gm_allqc_4.batches_myo.RData
    Untracked:  data/gm_allqc_4.batches_myo_mis.RData
    Untracked:  data/gm_samqc_4.batches_myo.RData
    Untracked:  data/gm_serreze.BC312.RData
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratiov_4.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratiov_4.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.4.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.4.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_4.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_4.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.4.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.4.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_4.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_4.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.4.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.4.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_4.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_4.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.4.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.4.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_4.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_4.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratiov_4.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratiov_4.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.4.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.4.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_4.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_4.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.4.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.4.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_4.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_4.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.4.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.4.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_4.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_4.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.4.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.4.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_4.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_4.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratiov_4.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratiov_4.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.4.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.4.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_4.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.4.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.4.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_4.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.4.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.4.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_4.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.4.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.4.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_4.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-10_peak.marker-UNC18805053_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-10_peak.marker-UNCHS029427_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-11_peak.marker-UNCHS031753_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-11_peak.marker-UNCHS031802_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-12_peak.marker-JAX00326005_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-12_peak.marker-UNC21995304_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-13_peak.marker-JAX00370189_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-13_peak.marker-UNCHS035661_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-14_peak.marker-UNC24597582_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-14_peak.marker-UNCHS039096_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-15_peak.marker-UNC25489755_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-15_peak.marker-UNCHS040614_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-16_peak.marker-UNCHS042686_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-17_peak.marker-UNCHS043777_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-17_peak.marker-UNCHS043880_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-18_peak.marker-UNC29296831_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-18_peak.marker-UNC29297751_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-19_peak.marker-UNC30069852_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-19_peak.marker-UNC30386742_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-1_peak.marker-UNCHS001121_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-1_peak.marker-UNCHS002308_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-2_peak.marker-UNC3990359_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-2_peak.marker-UNCHS006135_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-3_peak.marker-JAX00105915_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-3_peak.marker-UNC6020011_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-4_peak.marker-UNC8099452_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-4_peak.marker-UNC8161950_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-5_peak.marker-UNC9678100_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-5_peak.marker-UNC9678931_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-6_peak.marker-UNC12162881_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-6_peak.marker-backupUNC060363218_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-7_peak.marker-UNC12719038_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-7_peak.marker-UNCHS022024_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-8_peak.marker-UNC14948439_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-8_peak.marker-UNCHS023592_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-9_peak.marker-UNC16009822_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-9_peak.marker-UNC17271730_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-X_peak.marker-UNC31358512_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-X_peak.marker-UNCHS049472_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-10_peak.marker-UNC18805053_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-10_peak.marker-UNCHS029427_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-11_peak.marker-UNCHS031753_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-11_peak.marker-UNCHS031802_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-12_peak.marker-JAX00326005_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-12_peak.marker-UNC21995304_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-13_peak.marker-JAX00370189_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-13_peak.marker-UNCHS035661_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-14_peak.marker-UNC24597582_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-14_peak.marker-UNCHS039096_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-15_peak.marker-UNC25489755_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-15_peak.marker-UNCHS040614_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-16_peak.marker-UNCHS042686_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-17_peak.marker-UNCHS043777_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-17_peak.marker-UNCHS043880_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-18_peak.marker-UNC29296831_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-18_peak.marker-UNC29297751_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-19_peak.marker-UNC30069852_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-19_peak.marker-UNC30386742_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-1_peak.marker-UNCHS001121_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-1_peak.marker-UNCHS002308_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-2_peak.marker-UNC3990359_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-2_peak.marker-UNCHS006135_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-3_peak.marker-JAX00105915_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-3_peak.marker-UNC6020011_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-4_peak.marker-UNC8099452_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-4_peak.marker-UNC8161950_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-5_peak.marker-UNC9678100_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-5_peak.marker-UNC9678931_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-6_peak.marker-UNC12162881_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-6_peak.marker-backupUNC060363218_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-7_peak.marker-UNC12719038_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-7_peak.marker-UNCHS022024_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-8_peak.marker-UNC14948439_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-8_peak.marker-UNCHS023592_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-9_peak.marker-UNC16009822_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-9_peak.marker-UNC17271730_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-X_peak.marker-UNC31358512_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-X_peak.marker-UNCHS049472_lod.drop-1.5_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_gm_qtl_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratiov_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratiov_4.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.geno.freq.4.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.geno.freq.removed.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.geno.freq.removed_4.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.4.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_4.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.probs.freq.4.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.probs.freq.removed.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.probs.freq.removed_4.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.4.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_4.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_gm_qtl_snpsqc_dis_no-x_updated_4.batches_myo.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratiov_4.batches_myo.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratiov_4.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.4.batches_myo.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.4.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_4.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.4.batches_myo.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.4.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_4.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.4.batches_myo.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.4.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_4.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.4.batches_myo.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.4.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_4.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratiov_4.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratiov_4.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.4.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.4.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_4.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.4.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.4.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_4.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.4.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.4.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_4.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.4.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.4.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_4.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo1.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis1.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.4.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.4.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_4.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.4.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.4.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_4.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.4.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.4.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_4.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.4.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.4.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_4.batches_myo_mis.csv
    Untracked:  data/percent_missing_id_4.batches_myo.RData
    Untracked:  data/percent_missing_marker_4.batches_myo.RData
    Untracked:  data/pheno_4.batches_myo.csv
    Untracked:  data/physical_map_4.batches_myo.csv
    Untracked:  data/qc_info_bad_sample_4.batches_myo.RData
    Untracked:  data/sample_geno_AHB_4.batches_myo.csv
    Untracked:  data/sample_geno_bc_4.batches_myo.csv
    Untracked:  data/serreze_probs_4.batches_myo.rds
    Untracked:  data/serreze_probs_allqc_4.batches_myo.rds
    Untracked:  data/serreze_probs_allqc_4.batches_myo_mis.rds
    Untracked:  data/summary.cg_4.batches_myo.RData
    Untracked:  output/Percent_missing_genotype_data_4.batches_myo.pdf
    Untracked:  output/Percent_missing_genotype_data_per_marker_4.batches_myo.pdf
    Untracked:  output/Proportion_matching_genotypes_before_removal_of_bad_samples_4.batches_myo.pdf
    Untracked:  output/genotype_error_marker_4.batches_myo.pdf
    Untracked:  output/genotype_frequency_marker_4.batches_myo.pdf

Unstaged changes:
    Modified:   analysis/index_5.batches.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


with sample outliers

load("data/gm_allqc_4.batches_myo.RData")

#gm_allqc
gm=gm_allqc
gm
Object of class cross2 (crosstype "bc")

Total individuals              208
No. genotyped individuals      208
No. phenotyped individuals     208
No. with both geno & pheno     208

No. phenotypes                   1
No. covariates                  11
No. phenotype covariates         0

No. chromosomes                 20
Total markers                32610

No. markers by chr:
   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
2498 2407 1748 1770 1649 1835 1544 1515 1773 1102 1744 1214 1442 1497 1109  835 
  17   18   19    X 
 674  813  940 4501 
pr <- readRDS("data/serreze_probs_allqc_4.batches_myo.rds")
#pr <- readRDS("data/serreze_probs.rds")

geno <- read.csv("/Users/corneb/Documents/MyJax/CS/Projects/Serreze/haplotype.reconstruction/output_4.batches_myo_corrected/sample_geno_bc_4.batches_myo_BC217.csv", as.is=T)
names(geno) <- gsub("^X","",names(geno))
names(geno) <- gsub("\\.","-",names(geno))
rownames(geno) <- geno$marker
## extracting animals with ici and pbs group status
#miceinfo <- gm$covar[gm$covar$group == "PBS" | gm$covar$group == "ICI",]
#table(miceinfo$group)
#mice.ids <- rownames(miceinfo)

#gm <- gm[mice.ids]
#gm
#table(gm$covar$group)

covars <- read_csv("data/covar_corrected_myo-yes.vs.myo-no_4.batches_myo.csv")
# removing any missing info
#covars <- subset(covars, covars$age.of.onset!='')
nrow(covars)
[1] 151
table(covars$"Myocarditis Status")

 NO YES 
 20 131 
table(covars$"Murine MHC KO Status")

HOM 
151 
table(covars$"Drug Treatment")

ICI PBS 
 93  58 
table(covars$"clinical pheno")

 EOI SICK 
  46  105 
# keeping only informative mice
gm <- gm[covars$Mouse.ID]
gm
Object of class cross2 (crosstype "bc")

Total individuals              151
No. genotyped individuals      151
No. phenotyped individuals     151
No. with both geno & pheno     151

No. phenotypes                   1
No. covariates                  11
No. phenotype covariates         0

No. chromosomes                 20
Total markers                32610

No. markers by chr:
   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
2498 2407 1748 1770 1649 1835 1544 1515 1773 1102 1744 1214 1442 1497 1109  835 
  17   18   19    X 
 674  813  940 4501 
table(gm$covar$"Myocarditis Status")

 NO YES 
 20 131 
table(gm$covar$"Murine MHC KO Status")

HOM 
151 
table(gm$covar$"Drug Treatment")

ICI PBS 
 93  58 
table(gm$covar$"clinical pheno")

 EOI SICK 
  46  105 
pr.qc.ids <- pr
for (i in 1:20){pr.qc.ids[[i]] = pr.qc.ids[[i]][covars$Mouse.ID,,]}

geno <- geno[,covars$Mouse.ID]
geno <- geno[marker_names(gm),]
dim(geno)
[1] 32610   151
## calculating genotype frequencies
### from geno genotypes
g <- do.call("cbind", gm$geno)
gf_mar_geno <- t(apply(g, 2, function(a) table(factor(a, 1:2))/sum(a != 0)))
gn_mar_geno <- t(apply(g, 2, function(a) table(factor(a, 0:2))))
#gf_mar_raw<- gf_mar_raw[gf_mar_raw[,2] != "NaN",]
colnames(gf_mar_geno) <- c("freq_AA_geno_table","freq_AB_geno_table")
colnames(gn_mar_geno) <- c("count_missing_geno_table","count_AA_geno_table","count_AB_geno_table")
gfn_mar_geno <- merge(as.data.frame(gn_mar_geno), as.data.frame(gf_mar_geno), by="row.names")
rownames(gfn_mar_geno) <- gfn_mar_geno[,1]
gfn_mar_geno <- gfn_mar_geno[-1]

### from raw using table function in R
#genosl <- list()
#for(i in 1:nrow(geno)){
##for(i in 1:3){
#    genoi <- geno[i,]
#    freqf <- table(factor(geno[i,], c("-","AA","AB")))
#    genoi$count_AA_raw_rowSums <- rowSums(genoi == "AA")
#    genoi$count_AB_raw_rowSums <- rowSums(genoi == "AB")
#    genoi$count_missing_raw_rowSums <- rowSums(genoi == "-")
#    freqf <- t(table(factor(geno[i,], c("-","AA","AB"))))
#    freqf <- as.data.frame(t(freqf[1,]))
#    rownames(freqf) <- rownames(genoi)
#    colnames(freqf) <- c("count_missing_raw_table","count_AA_raw_table","count_AB_raw_table")
#    genoif <- cbind(freqf,genoi[c("count_AA_raw_rowSums","count_AB_raw_rowSums","count_missing_raw_rowSums")])
#    genosl[[i]] = genoif
#}
#gf_mar_raw <- do.call("rbind",genosl)
#gf_mar_raw <- gf_mar_raw[,c(1:3,6,4:5)]
#gf_mar_raw$index <- 1:nrow(gf_mar_raw)

### from probabilities
gf_mar_probs.1 <- calc_geno_freq(pr.qc.ids, by = "marker", omit_x = FALSE)
#gn_mar_probs <- calc_geno_freq(probs, by = "individual", omit_x = FALSE)
gf_mar_probs <- rbind(gf_mar_probs.1$A[,1:2], gf_mar_probs.1$X[,1:2])
colnames(gf_mar_probs) <- paste0("freq_",colnames(gf_mar_probs),"_probs")
gf_mar_probs <- as.data.frame(gf_mar_probs)
gf_mar_probs$index <- 1:nrow(gf_mar_probs)

### merging all genotype frequecies for all markers
#gf_mar.1 <- merge(as.data.frame(gf_mar_raw), as.data.frame(gfn_mar_geno), by="row.names")
#rownames(gf_mar.1) <- gf_mar.1[,1]
#gf_mar.1 <- gf_mar.1[-1]
#gf_mar <- merge(gf_mar.1,as.data.frame(gf_mar_probs), by="row.names")
gf_mar <- merge(as.data.frame(gfn_mar_geno),as.data.frame(gf_mar_probs), by="row.names")
rownames(gf_mar) <- gf_mar[,1]
gf_mar <- gf_mar[-1]
gf_mar <- gf_mar[order(gf_mar$index),]
dim(gf_mar)
[1] 32610     8
# Calculating ratio and flagging informative marker
gf_mar$ratio = as.numeric(gf_mar$freq_AA_geno_table)/as.numeric(gf_mar$freq_AB_geno_table)
gf_mar$Include = ifelse(gf_mar$ratio >= 0.90 & gf_mar$ratio <= 1.10, TRUE,FALSE)
table(gf_mar$Include)

FALSE  TRUE 
20873 11737 
## filtering out <= 0.05
gf_mar$count.geno <- rowSums(gf_mar[c("freq_AA_geno_table","freq_AB_geno_table")] <=0.05)
filtered_gf_mar_geno <- gf_mar[gf_mar$count.geno != 1,]
filtered_gf_mar_geno <- filtered_gf_mar_geno[,-which(names(filtered_gf_mar_geno) %in% c("count.geno","index"))]
dim(filtered_gf_mar_geno)
[1] 26149     9
table(filtered_gf_mar_geno$Include)

FALSE  TRUE 
14412 11737 
gf_mar$count.probs <- rowSums(gf_mar[c("freq_AA_probs","freq_AB_probs")] <=0.05)
filtered_gf_mar_probs <- gf_mar[gf_mar$count.probs != 1,]
filtered_gf_mar_probs <- filtered_gf_mar_probs[,-which(names(filtered_gf_mar_probs) %in% c("count.geno","count.probs","index"))]
dim(filtered_gf_mar_probs)
[1] 27239     9
table(filtered_gf_mar_probs$Include)

FALSE  TRUE 
15503 11736 
## merging with sample_genos
filtered_gf_mar_geno_sample <- merge(geno,filtered_gf_mar_geno, by="row.names", all.y=T, sort=F)
#filtered_gf_mar_geno_sample <- filtered_gf_mar_geno_sample[order(filtered_gf_mar_geno_sample$index),]     
#filtered_gf_mar_geno_sample <- filtered_gf_mar_geno_sample[,-which(names(filtered_gf_mar_geno_sample) %in% c("count.geno","index"))]
names(filtered_gf_mar_geno_sample)[1] <- c("marker")
dim(filtered_gf_mar_geno_sample)
[1] 26149   161
filtered_gf_mar_probs_sample <- merge(geno,filtered_gf_mar_probs, by="row.names", all.y=T, sort=F)
#filtered_gf_mar_probs_sample <- filtered_gf_mar_probs_sample[order(filtered_gf_mar_probs_sample$index),]
#filtered_gf_mar_probs_sample <- filtered_gf_mar_probs_sample[,-which(names(filtered_gf_mar_probs_sample) %in% c("count.geno","count.probs","index"))]
names(filtered_gf_mar_probs_sample)[1] <- c("marker")
dim(filtered_gf_mar_probs_sample)
[1] 27239   161
## saving files
write.csv(filtered_gf_mar_geno_sample, "data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_4.batches_myo.csv", quote=F)
write.csv(filtered_gf_mar_probs_sample, "data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_4.batches_myo.csv", quote=F)

write.csv(filtered_gf_mar_geno, "data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_geno.ratio_4.batches_myo.csv", quote=F)
write.csv(filtered_gf_mar_probs, "data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_geno.ratio_4.batches_myo.csv", quote=F)

sample outliers removed

load("data/gm_allqc_4.batches_myo.RData")

#gm_allqc
gm=gm_allqc
gm
Object of class cross2 (crosstype "bc")

Total individuals              208
No. genotyped individuals      208
No. phenotyped individuals     208
No. with both geno & pheno     208

No. phenotypes                   1
No. covariates                  11
No. phenotype covariates         0

No. chromosomes                 20
Total markers                32610

No. markers by chr:
   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
2498 2407 1748 1770 1649 1835 1544 1515 1773 1102 1744 1214 1442 1497 1109  835 
  17   18   19    X 
 674  813  940 4501 
pr <- readRDS("data/serreze_probs_allqc_4.batches_myo.rds")
#pr <- readRDS("data/serreze_probs.rds")

geno <- read.csv("/Users/corneb/Documents/MyJax/CS/Projects/Serreze/haplotype.reconstruction/output_4.batches_myo_corrected/sample_geno_bc_4.batches_myo_BC217.csv", as.is=T)
names(geno) <- gsub("^X","",names(geno))
names(geno) <- gsub("\\.","-",names(geno))
rownames(geno) <- geno$marker
## extracting animals with ici and pbs group status
#miceinfo <- gm$covar[gm$covar$group == "PBS" | gm$covar$group == "ICI",]
#table(miceinfo$group)
#mice.ids <- rownames(miceinfo)

#gm <- gm[mice.ids]
#gm
#table(gm$covar$group)

covars <- read_csv("data/covar_corrected.cleaned_myo-yes.vs.myo-no_4.batches_myo.csv")
# removing any missing info
covars <- subset(covars, covars$out.age.of.onset=='Keep' & covars$out.rz.age=='Keep')
nrow(covars)
[1] 151
table(covars$"Myocarditis Status")

 NO YES 
 20 131 
table(covars$"Murine MHC KO Status")

HOM 
151 
table(covars$"Drug Treatment")

ICI PBS 
 93  58 
table(covars$"clinical pheno")

 EOI SICK 
  46  105 
# keeping only informative mice
gm <- gm[covars$Mouse.ID]
gm
Object of class cross2 (crosstype "bc")

Total individuals              151
No. genotyped individuals      151
No. phenotyped individuals     151
No. with both geno & pheno     151

No. phenotypes                   1
No. covariates                  11
No. phenotype covariates         0

No. chromosomes                 20
Total markers                32610

No. markers by chr:
   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
2498 2407 1748 1770 1649 1835 1544 1515 1773 1102 1744 1214 1442 1497 1109  835 
  17   18   19    X 
 674  813  940 4501 
table(gm$covar$"Myocarditis Status")

 NO YES 
 20 131 
table(gm$covar$"Murine MHC KO Status")

HOM 
151 
table(gm$covar$"Drug Treatment")

ICI PBS 
 93  58 
table(gm$covar$"clinical pheno")

 EOI SICK 
  46  105 
pr.qc.ids <- pr
for (i in 1:20){pr.qc.ids[[i]] = pr.qc.ids[[i]][covars$Mouse.ID,,]}

geno <- geno[,covars$Mouse.ID]
geno <- geno[marker_names(gm),]
dim(geno)
[1] 32610   151
## calculating genotype frequencies
### from geno genotypes
g <- do.call("cbind", gm$geno)
gf_mar_geno <- t(apply(g, 2, function(a) table(factor(a, 1:2))/sum(a != 0)))
gn_mar_geno <- t(apply(g, 2, function(a) table(factor(a, 0:2))))
#gf_mar_raw<- gf_mar_raw[gf_mar_raw[,2] != "NaN",]
colnames(gf_mar_geno) <- c("freq_AA_geno_table","freq_AB_geno_table")
colnames(gn_mar_geno) <- c("count_missing_geno_table","count_AA_geno_table","count_AB_geno_table")
gfn_mar_geno <- merge(as.data.frame(gn_mar_geno), as.data.frame(gf_mar_geno), by="row.names")
rownames(gfn_mar_geno) <- gfn_mar_geno[,1]
gfn_mar_geno <- gfn_mar_geno[-1]

### from raw using table function in R
#genosl <- list()
#for(i in 1:nrow(geno)){
##for(i in 1:3){
#    genoi <- geno[i,]
#    freqf <- table(factor(geno[i,], c("-","AA","AB")))
#    genoi$count_AA_raw_rowSums <- rowSums(genoi == "AA")
#    genoi$count_AB_raw_rowSums <- rowSums(genoi == "AB")
#    genoi$count_missing_raw_rowSums <- rowSums(genoi == "-")
#    freqf <- t(table(factor(geno[i,], c("-","AA","AB"))))
#    freqf <- as.data.frame(t(freqf[1,]))
#    rownames(freqf) <- rownames(genoi)
#    colnames(freqf) <- c("count_missing_raw_table","count_AA_raw_table","count_AB_raw_table")
#    genoif <- cbind(freqf,genoi[c("count_AA_raw_rowSums","count_AB_raw_rowSums","count_missing_raw_rowSums")])
#    genosl[[i]] = genoif
#}
#gf_mar_raw <- do.call("rbind",genosl)
#gf_mar_raw <- gf_mar_raw[,c(1:3,6,4:5)]
#gf_mar_raw$index <- 1:nrow(gf_mar_raw)

### from probabilities
gf_mar_probs.1 <- calc_geno_freq(pr.qc.ids, by = "marker", omit_x = FALSE)
#gn_mar_probs <- calc_geno_freq(probs, by = "individual", omit_x = FALSE)
gf_mar_probs <- rbind(gf_mar_probs.1$A[,1:2], gf_mar_probs.1$X[,1:2])
colnames(gf_mar_probs) <- paste0("freq_",colnames(gf_mar_probs),"_probs")
gf_mar_probs <- as.data.frame(gf_mar_probs)
gf_mar_probs$index <- 1:nrow(gf_mar_probs)

### merging all genotype frequecies for all markers
#gf_mar.1 <- merge(as.data.frame(gf_mar_raw), as.data.frame(gfn_mar_geno), by="row.names")
#rownames(gf_mar.1) <- gf_mar.1[,1]
#gf_mar.1 <- gf_mar.1[-1]
#gf_mar <- merge(gf_mar.1,as.data.frame(gf_mar_probs), by="row.names")
gf_mar <- merge(as.data.frame(gfn_mar_geno),as.data.frame(gf_mar_probs), by="row.names")
rownames(gf_mar) <- gf_mar[,1]
gf_mar <- gf_mar[-1]
gf_mar <- gf_mar[order(gf_mar$index),]
dim(gf_mar)
[1] 32610     8
# Calculating ratio and flagging informative marker
gf_mar$ratio = as.numeric(gf_mar$freq_AA_geno_table)/as.numeric(gf_mar$freq_AB_geno_table)
gf_mar$Include = ifelse(gf_mar$ratio >= 0.90 & gf_mar$ratio <= 1.10, TRUE,FALSE)
table(gf_mar$Include)

FALSE  TRUE 
20873 11737 
## filtering out <= 0.05
gf_mar$count.geno <- rowSums(gf_mar[c("freq_AA_geno_table","freq_AB_geno_table")] <=0.05)
filtered_gf_mar_geno <- gf_mar[gf_mar$count.geno != 1,]
filtered_gf_mar_geno <- filtered_gf_mar_geno[,-which(names(filtered_gf_mar_geno) %in% c("count.geno","index"))]
dim(filtered_gf_mar_geno)
[1] 26149     9
table(filtered_gf_mar_geno$Include)

FALSE  TRUE 
14412 11737 
gf_mar$count.probs <- rowSums(gf_mar[c("freq_AA_probs","freq_AB_probs")] <=0.05)
filtered_gf_mar_probs <- gf_mar[gf_mar$count.probs != 1,]
filtered_gf_mar_probs <- filtered_gf_mar_probs[,-which(names(filtered_gf_mar_probs) %in% c("count.geno","count.probs","index"))]
dim(filtered_gf_mar_probs)
[1] 27239     9
table(filtered_gf_mar_probs$Include)

FALSE  TRUE 
15503 11736 
## merging with sample_genos
filtered_gf_mar_geno_sample <- merge(geno,filtered_gf_mar_geno, by="row.names", all.y=T, sort=F)
#filtered_gf_mar_geno_sample <- filtered_gf_mar_geno_sample[order(filtered_gf_mar_geno_sample$index),]     
#filtered_gf_mar_geno_sample <- filtered_gf_mar_geno_sample[,-which(names(filtered_gf_mar_geno_sample) %in% c("count.geno","index"))]
names(filtered_gf_mar_geno_sample)[1] <- c("marker")
dim(filtered_gf_mar_geno_sample)
[1] 26149   161
filtered_gf_mar_probs_sample <- merge(geno,filtered_gf_mar_probs, by="row.names", all.y=T, sort=F)
#filtered_gf_mar_probs_sample <- filtered_gf_mar_probs_sample[order(filtered_gf_mar_probs_sample$index),]
#filtered_gf_mar_probs_sample <- filtered_gf_mar_probs_sample[,-which(names(filtered_gf_mar_probs_sample) %in% c("count.geno","count.probs","index"))]
names(filtered_gf_mar_probs_sample)[1] <- c("marker")
dim(filtered_gf_mar_probs_sample)
[1] 27239   161
## saving files
write.csv(filtered_gf_mar_geno_sample, "data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_4.batches_myo.csv", quote=F)
write.csv(filtered_gf_mar_probs_sample, "data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_4.batches_myo.csv", quote=F)

write.csv(filtered_gf_mar_geno, "data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv", quote=F)
write.csv(filtered_gf_mar_probs, "data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_4.batches_myo.csv", quote=F)

R version 4.2.2 (2022-10-31)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] abind_1.4-5       qtl2_0.30         reshape2_1.4.4    ggplot2_3.4.0    
 [5] tibble_3.1.8      psych_2.2.9       readxl_1.4.1      cluster_2.1.4    
 [9] dplyr_1.0.10      optparse_1.7.3    rhdf5_2.40.0      mclust_6.0.0     
[13] tidyr_1.2.1       data.table_1.14.6 knitr_1.41        kableExtra_1.3.4 
[17] workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] httr_1.4.4         sass_0.4.4         bit64_4.0.5        jsonlite_1.8.4    
 [5] viridisLite_0.4.1  bslib_0.4.1        assertthat_0.2.1   getPass_0.2-2     
 [9] highr_0.9          blob_1.2.3         cellranger_1.1.0   yaml_2.3.6        
[13] pillar_1.8.1       RSQLite_2.2.19     lattice_0.20-45    glue_1.6.2        
[17] digest_0.6.30      promises_1.2.0.1   rvest_1.0.3        colorspace_2.0-3  
[21] htmltools_0.5.3    httpuv_1.6.6       plyr_1.8.8         pkgconfig_2.0.3   
[25] purrr_0.3.5        scales_1.2.1       webshot_0.5.4      processx_3.8.0    
[29] svglite_2.1.0      whisker_0.4.1      getopt_1.20.3      later_1.3.0       
[33] git2r_0.30.1       generics_0.1.3     cachem_1.0.6       withr_2.5.0       
[37] cli_3.4.1          mnormt_2.1.1       magrittr_2.0.3     memoise_2.0.1     
[41] evaluate_0.18      ps_1.7.2           fs_1.5.2           fansi_1.0.3       
[45] nlme_3.1-160       xml2_1.3.3         tools_4.2.2        lifecycle_1.0.3   
[49] stringr_1.5.0      Rhdf5lib_1.18.2    munsell_0.5.0      callr_3.7.3       
[53] compiler_4.2.2     jquerylib_0.1.4    systemfonts_1.0.4  rlang_1.0.6       
[57] grid_4.2.2         rhdf5filters_1.8.0 rstudioapi_0.14    rmarkdown_2.18    
[61] gtable_0.3.1       DBI_1.1.3          R6_2.5.1           bit_4.0.5         
[65] fastmap_1.1.0      utf8_1.2.2         rprojroot_2.0.3    stringi_1.7.8     
[69] parallel_4.2.2     Rcpp_1.0.9         vctrs_0.5.1        tidyselect_1.2.0  
[73] xfun_0.35