Last updated: 2023-04-14

Checks: 5 2

Knit directory: Serreze-T1D_Workflow/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230413) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/projects/serreze-lab/USERS/corneb/qtl2/workflowr/2023.04.13/Serreze-T1D_Workflow .

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 03e83ae. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Untracked files:
    Untracked:  analysis/0.1.1_preparing.data_bqc_7.batches_myo.Rmd
    Untracked:  analysis/0.1_samples_batch_20230124.Rmd
    Untracked:  analysis/0.1_samples_batch_20230225.Rmd
    Untracked:  analysis/0.1_samples_batch_20230313.Rmd
    Untracked:  analysis/0.2_haplotype_comparison_bqc_7.batches_myo_minprob.Rmd
    Untracked:  analysis/2.1_sample_bqc_7.batches_myo.Rmd
    Untracked:  analysis/2.2.1_snp_qc_7.batches_myo.Rmd
    Untracked:  analysis/2.2.1_snp_qc_7.batches_myo_mis.Rmd
    Untracked:  analysis/2.4_preparing.data_aqc_7.batches_myo.Rmd
    Untracked:  analysis/2.4_preparing.data_aqc_7.batches_myo_mis.Rmd
    Untracked:  analysis/3.1_phenotype.qc_corrected_7.batches_myo.Rmd
    Untracked:  analysis/3.1_phenotype.qc_corrected_7.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici-myo-yes.vs.het-ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici-myo-yes.vs.het-ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici-myo-yes.vs.het-ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici.vs.het-pbs_snpsqc_dis_no-x_updated_7.batches_myo.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici.vs.het-pbs_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici.vs.het-pbs_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-myo-yes.vs.ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-myo-yes.vs.ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-myo-yes.vs.ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-sick.vs.ici-eoi_snpsqc_dis_no-x_updated_7.batches_myo.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-sick.vs.ici-eoi_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-sick.vs.ici-eoi_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs_snpsqc_dis_no-x_updated_7.batches_myo.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_myo-yes.vs.myo-no_snpsqc_dis_no-x_updated_7.batches_myo.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_myo-yes.vs.myo-no_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_myo-yes.vs.myo-no_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_pbs-myo-yes.vs.pbs-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_pbs-myo-yes.vs.pbs-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_pbs-myo-yes.vs.pbs-myo-no_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_het-ici.vs.het-pbs_7.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_het-ici.vs.het-pbs_7.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_ici-myo-yes.vs.ici-myo-no_7.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_ici-myo-yes.vs.ici-myo-no_7.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_ici-sick.vs.ici-eoi_7.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_ici-sick.vs.ici-eoi_7.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_ici.vs.pbs_7.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_ici.vs.pbs_7.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_myo-yes.vs.myo-no_7.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_myo-yes.vs.myo-no_7.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo_mis.Rmd
    Untracked:  analysis/index_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_het-ici.vs.het-pbs_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_het-ici.vs.het-pbs_7.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_ici-myo-yes.vs.ici-myo-no_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_ici-myo-yes.vs.ici-myo-no_7.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_ici-sick.vs.ici-eoi_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_ici-sick.vs.ici-eoi_7.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_ici.vs.pbs_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_ici.vs.pbs_7batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_myo-yes.vs.myo-no_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_myo-yes.vs.myo-no_7.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo_mis.Rmd
    Untracked:  code/cc_variants.sqlite
    Untracked:  code/mouse_genes.sqlite
    Untracked:  code/mouse_genes_mgi.sqlite
    Untracked:  data/GM_covar_7.batches_myo.csv
    Untracked:  data/bad_markers_all_7.batches_myo.RData
    Untracked:  data/covar_corrected.cleaned_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_het-ici.vs.het-pbs_7.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_het-ici.vs.het-pbs_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_ici-myo-yes.vs.ici-myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_ici-myo-yes.vs.ici-myo-no_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_ici-sick.vs.ici-eoi_7.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_ici-sick.vs.ici-eoi_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_ici.vs.pbs_7.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_ici.vs.pbs_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_myo-yes.vs.myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_myo-yes.vs.myo-no_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected_het-ici.vs.het-pbs_7.batches_myo.csv
    Untracked:  data/covar_corrected_het-ici.vs.het-pbs_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected_ici-myo-yes.vs.ici-myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected_ici-myo-yes.vs.ici-myo-no_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected_ici-sick.vs.ici-eoi_7.batches_myo.csv
    Untracked:  data/covar_corrected_ici-sick.vs.ici-eoi_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected_ici.vs.pbs_7.batches_myo.csv
    Untracked:  data/covar_corrected_ici.vs.pbs_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected_myo-yes.vs.myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected_myo-yes.vs.myo-no_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo_mis.csv
    Untracked:  data/e_7.batches_myo.RData
    Untracked:  data/e_snpg_samqc_7.batches_myo.RData
    Untracked:  data/errors_ind_7.batches_myo.RData
    Untracked:  data/genetic_map_7.batches_myo.csv
    Untracked:  data/genotype_errors_marker_7.batches_myo.RData
    Untracked:  data/genotype_freq_marker_7.batches_myo.RData
    Untracked:  data/gm_allqc_7.batches_myo.RData
    Untracked:  data/gm_allqc_7.batches_myo_mis.RData
    Untracked:  data/gm_samqc_7.batches_myo.RData
    Untracked:  data/gm_serreze_7.batches_myo.RData
    Untracked:  data/gm_serreze_bc_7.batches_myo.RData
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-10_peak.marker-UNC18343990_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-10_peak.marker-UNC18343990_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-11_peak.marker-UNC20070077_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-11_peak.marker-UNC20070077_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-12_peak.marker-UNC21652584_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-12_peak.marker-UNC21652584_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-13_peak.marker-UNCHS036579_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-13_peak.marker-UNCHS036579_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-14_peak.marker-UNCHS037782_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-14_peak.marker-UNCHS037782_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-15_peak.marker-UNC26069905_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-15_peak.marker-UNCHS041223_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-16_peak.marker-JAX00070117_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-16_peak.marker-JAX00070117_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-17_peak.marker-UNC28542319_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-17_peak.marker-UNCJPD006670_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-18_peak.marker-UNC28776739_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-18_peak.marker-UNCHS045594_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-19_peak.marker-UNC30414168_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-19_peak.marker-UNC30426276_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-1_peak.marker-UNC2031646_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-1_peak.marker-UNCHS003700_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-2_peak.marker-ICR5131_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-2_peak.marker-UNCHS006420_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-3_peak.marker-UNC5667757_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-3_peak.marker-UNC5667757_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-4_peak.marker-UNC6759992_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-4_peak.marker-UNC6765178_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-5_peak.marker-UNC9889957_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-5_peak.marker-UNC9900273_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-6_peak.marker-UNC10800126_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-6_peak.marker-UNC10832076_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-7_peak.marker-UNCHS020903_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-7_peak.marker-UNCHS021163_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-8_peak.marker-UNC15471847_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-8_peak.marker-UNC15548888_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-9_peak.marker-UNC16231874_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-9_peak.marker-UNC16231874_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-X_peak.marker-UNCHS049472_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_blup_sub_chr-X_peak.marker-UNCHS049472_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-10_peak.marker-UNC18343990_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-10_peak.marker-UNC18343990_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-11_peak.marker-UNC20070077_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-11_peak.marker-UNC20070077_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-12_peak.marker-UNC21652584_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-12_peak.marker-UNC21652584_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-13_peak.marker-UNCHS036579_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-13_peak.marker-UNCHS036579_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-14_peak.marker-UNCHS037782_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-14_peak.marker-UNCHS037782_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-15_peak.marker-UNC26069905_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-15_peak.marker-UNCHS041223_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-16_peak.marker-JAX00070117_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-16_peak.marker-JAX00070117_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-17_peak.marker-UNC28542319_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-17_peak.marker-UNCJPD006670_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-18_peak.marker-UNC28776739_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-18_peak.marker-UNCHS045594_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-19_peak.marker-UNC30414168_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-19_peak.marker-UNC30426276_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-1_peak.marker-UNC2031646_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-1_peak.marker-UNCHS003700_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-2_peak.marker-ICR5131_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-2_peak.marker-UNCHS006420_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-3_peak.marker-UNC5667757_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-3_peak.marker-UNC5667757_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-4_peak.marker-UNC6759992_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-4_peak.marker-UNC6765178_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-5_peak.marker-UNC9889957_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-5_peak.marker-UNC9900273_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-6_peak.marker-UNC10800126_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-6_peak.marker-UNC10832076_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-7_peak.marker-UNCHS020903_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-7_peak.marker-UNCHS021163_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-8_peak.marker-UNC15471847_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-8_peak.marker-UNC15548888_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-9_peak.marker-UNC16231874_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-9_peak.marker-UNC16231874_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-X_peak.marker-UNCHS049472_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_genes_chr-X_peak.marker-UNCHS049472_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/ici.vs.pbs_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/mean.differences_age.of.onset_ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
    Untracked:  data/mean.differences_age.of.onset_ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/mean.differences_group_ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/percent_missing_id_7.batches_myo.RData
    Untracked:  data/percent_missing_marker_7.batches_myo.RData
    Untracked:  data/pheno_7.batches_myo.csv
    Untracked:  data/physical_map_7.batches_myo.csv
    Untracked:  data/probs_36state_bc_7.batches_myo.rds
    Untracked:  data/probs_8state_bc_7.batches_myo.rds
    Untracked:  data/qc_info_bad_sample_7.batches_myo.RData
    Untracked:  data/sample_geno_AHB_7.batches_myo.csv
    Untracked:  data/sample_geno_AHB_7.batches_myo_orig.id.csv
    Untracked:  data/sample_geno_bc_7.batches_myo.csv
    Untracked:  data/sample_geno_bc_7.batches_myo_orig.id.csv
    Untracked:  data/serreze_probs_7.batches_myo.rds
    Untracked:  data/serreze_probs_allqc_7.batches_myo.rds
    Untracked:  data/serreze_probs_allqc_7.batches_myo_mis.rds
    Untracked:  data/summary.cg_7.batches_myo.RData

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Loading Data

load("data/gm_allqc_7.batches_myo.RData")

#gm_allqc
gm=gm_allqc
gm
Object of class cross2 (crosstype "bc")

Total individuals              357
No. genotyped individuals      357
No. phenotyped individuals     357
No. with both geno & pheno     357

No. phenotypes                   1
No. covariates                  11
No. phenotype covariates         0

No. chromosomes                 20
Total markers                32660

No. markers by chr:
   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
2482 2412 1742 1772 1648 1842 1541 1517 1769 1092 1754 1230 1441 1505 1128  842 
  17   18   19    X 
 655  820  945 4523 
#pr <- readRDS("data/serreze_probs_allqc.rds")
#pr <- readRDS("data/serreze_probs.rds")

##extracting animals with ici and pbs group status
##extracting animals 
#Myocarditis Status
miceinfo <- gm$covar[gm$covar$"Myocarditis Status" == "YES",]
#table(miceinfo$group)
#MMurine MHC KO Status
miceinfo <- miceinfo[miceinfo$"Murine MHC KO Status" == "HOM",]
#Drug Treatment
miceinfo <- miceinfo[miceinfo$"Drug Treatment" == "ICI" | miceinfo$"Drug Treatment" == "PBS",]
#Clinical Phenotype
miceinfo <- miceinfo[miceinfo$"clinical pheno" == "SICK" | miceinfo$"clinical pheno" == "EOI",]

table(miceinfo$"Myocarditis Status")

YES 
212 
table(miceinfo$"Murine MHC KO Status")

HOM 
212 
table(miceinfo$"Drug Treatment")

ICI PBS 
133  79 
table(miceinfo$"clinical pheno")

 EOI SICK 
  74  138 
mice.ids <- rownames(miceinfo)

##removing X samples
x.samples = c("NM00179-ICI-EOI","NM00186-ICI-EOI","D22-ICI-EOI","D39-ICI-Myo","D67-ICI-Myo","D111-PBS-Myo","D120-ICI-Myo","6895-PBS-Myo","D704-ICI-Myo")
mice.ids = mice.ids[!as.character(do.call(rbind.data.frame, strsplit(mice.ids, "_"))[,7]) %in% x.samples]

#removing duplicates
dup.samples = c("The_Jackson_Lab_Serreze_MURGIGV01_20230225_D249-PBS-EOI_H3")
mice.ids = mice.ids[!mice.ids %in% dup.samples]

gm <- gm[mice.ids]
gm
Object of class cross2 (crosstype "bc")

Total individuals              212
No. genotyped individuals      212
No. phenotyped individuals     212
No. with both geno & pheno     212

No. phenotypes                   1
No. covariates                  11
No. phenotype covariates         0

No. chromosomes                 20
Total markers                32660

No. markers by chr:
   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
2482 2412 1742 1772 1648 1842 1541 1517 1769 1092 1754 1230 1441 1505 1128  842 
  17   18   19    X 
 655  820  945 4523 
table(gm$covar$"Myocarditis Status")

YES 
212 
table(gm$covar$"Murine MHC KO Status")

HOM 
212 
table(gm$covar$"Drug Treatment")

ICI PBS 
133  79 
table(gm$covar$"clinical pheno")

 EOI SICK 
  74  138 
gm$covar$ici_vs_pbs <- ifelse(gm$covar$"Drug Treatment" == "PBS", 0, 1)
gm$covar$group = gm$covar$ici_vs_pbs


##loading genotypes

genos.1 <- read.csv("data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv")
dim(genos.1)
[1] 26462   223
genos.1 <- genos.1[genos.1$Include,]
dim(genos.1)
[1] 12015   223
#dis.genos.1 <- read.csv("data/ici.vs.pbs_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv")
#dim(dis.genos.1)
rownames(genos.1) <- genos.1$marker
genos.1 <- t(genos.1[3:(ncol(genos.1)-9)])
rownames(genos.1) <- gsub("\\.","-",rownames(genos.1))

genos.2<- read.csv("data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv")
dim(genos.2)
[1] 26462   223
genos.2 <- genos.2[genos.2$Include,]
dim(genos.2)
[1] 12015   223
#dis.genos.2 <- read.csv("data/ici.vs.pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv")
rownames(genos.2) <- genos.2$marker
genos.2 <- t(genos.2[3:(ncol(genos.2)-9)])
rownames(genos.2) <- gsub("\\.","-",rownames(genos.2))


##merge with phenotypes (age.of.onset & binary)

names(gm$covar)[6] <- c("age.of.onset")
gm$covar$age.of.onset <- as.numeric(gm$covar$age.of.onset)
#if(0 %in% unique(gm$covar$age.of.onset)){
gm$covar[gm$covar$age.of.onset==0 | is.na(gm$covar$age.of.onset) | gm$covar$age.of.onset=="NA" ,]$age.of.onset = ""
gm$covar[gm$covar$age.of.onset=='' ,]$age.of.onset <- 40
gm$covar$age.of.onset <- as.numeric(gm$covar$age.of.onset)

geno.pheno.1 <- merge(data.frame(genos.1), gm$covar,  by="row.names", all.x=T, sort=F)
aov.1 <- stats::aov(age.of.onset ~ group, geno.pheno.1)
mse.1 <- mean(aov.1$residuals^2) 
geno.pheno.2 <- merge(data.frame(genos.2), gm$covar,  by="row.names", all.x=T, sort=F)
aov.2 <- stats::aov(age.of.onset ~ group, geno.pheno.2)
mse.2 <- mean(aov.2$residuals^2) 


## calculating effect (age.of.onset)

age.marker.sum.1 <- list()
geno.pheno.1a <- geno.pheno.1[-1]
for(i in 1:(ncol(geno.pheno.1a)-13)){
#geno.pheno.1$snp=geno.pheno.1[i]
age.marker.1 <- geno.pheno.1a %>% 
  group_by(geno.pheno.1a[i])  %>%
  summarize(mean_age.of.onset = mean(as.numeric(age.of.onset), na.rm =T))


  names(age.marker.1) <- c("genotypes", paste0(names(geno.pheno.1a[i]),"_age.of.onset"))
  genotypes <- as.data.frame(c("-","AA","AB"))
  names(genotypes) <- c("genotypes")
  age.marker.1 <- merge(genotypes, age.marker.1, by=c("genotypes"), all=T, sort=T)
  #print(age.marker.1)

  age.marker.sum.1[[i]] <- as.data.frame(age.marker.1)
}

age.marker.sum.1.all <- Reduce(function(x, y) merge(x, y, by=c("genotypes"),all=TRUE),age.marker.sum.1)
rownames(age.marker.sum.1.all) <- age.marker.sum.1.all$genotypes
age.marker.sum.1.all.t <- t(age.marker.sum.1.all[-1])
rownames(age.marker.sum.1.all.t) <- gsub("_age.of.onset","",rownames(age.marker.sum.1.all.t))
age.marker.sum.1.all.t <- as.data.frame(age.marker.sum.1.all.t)
age.marker.sum.1.all.t$diffhethom <- age.marker.sum.1.all.t$AB - age.marker.sum.1.all.t$AA
max.1 <- max(age.marker.sum.1.all.t$diffhethom)
min.1 <- min(age.marker.sum.1.all.t$diffhethom)
write.csv(age.marker.sum.1.all.t,"data/mean.differences_age.of.onset_ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv")

age.marker.sum.2 <- list()
geno.pheno.2a <- geno.pheno.2[-1]
for(i in 1:(ncol(geno.pheno.2a)-13)){
#geno.pheno.2$snp=geno.pheno.2[i]
age.marker.2 <- geno.pheno.2a %>% 
  group_by(geno.pheno.2a[i])  %>%
  summarize(mean_age.of.onset = mean(as.numeric(age.of.onset), na.rm =T))


  names(age.marker.2) <- c("genotypes", paste0(names(geno.pheno.2a[i]),"_age.of.onset"))
  genotypes <- as.data.frame(c("-","AA","AB"))
  names(genotypes) <- c("genotypes")
  age.marker.2 <- merge(genotypes, age.marker.2, by=c("genotypes"), all=T, sort=T)
  #print(age.marker.2)

  age.marker.sum.2[[i]] <- as.data.frame(age.marker.2)
}

age.marker.sum.2.all <- Reduce(function(x, y) merge(x, y, by=c("genotypes"),all=TRUE),age.marker.sum.2)
rownames(age.marker.sum.2.all) <- age.marker.sum.2.all$genotypes
age.marker.sum.2.all.t <- t(age.marker.sum.2.all[-1])
rownames(age.marker.sum.2.all.t) <- gsub("_age.of.onset","",rownames(age.marker.sum.2.all.t))
age.marker.sum.2.all.t <- as.data.frame(age.marker.sum.2.all.t)
age.marker.sum.2.all.t$diffhethom <- age.marker.sum.2.all.t$AB - age.marker.sum.2.all.t$AA
max.2 <- max(age.marker.sum.2.all.t$diffhethom)
min.2 <- min(age.marker.sum.2.all.t$diffhethom)
write.csv(age.marker.sum.2.all.t,"data/mean.differences_age.of.onset_ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv")


max.a <- max(max.1, max.2)
print(max.a)
[1] 5.857844
min.a <- min(min.1, min.2)
print(min.a)
[1] -5.041677
mse.a <- (mse.1 + mse.2)/2
print(mse.a)
[1] 118.9566
## calculating effect (group)

age.marker.sum.1 <- list()
geno.pheno.1a <- geno.pheno.1[-1]
for(i in 1:(ncol(geno.pheno.1a)-13)){
#geno.pheno.1$snp=geno.pheno.1[i]
age.marker.1 <- geno.pheno.1a %>% 
  group_by(geno.pheno.1a[i])  %>%
  summarize(mean_group = mean(as.numeric(group), na.rm =T))


  names(age.marker.1) <- c("genotypes", paste0(names(geno.pheno.1a[i]),"_group"))
  genotypes <- as.data.frame(c("-","AA","AB"))
  names(genotypes) <- c("genotypes")
  age.marker.1 <- merge(genotypes, age.marker.1, by=c("genotypes"), all=T, sort=T)
  #print(age.marker.1)

  age.marker.sum.1[[i]] <- as.data.frame(age.marker.1)
}

age.marker.sum.1.all <- Reduce(function(x, y) merge(x, y, by=c("genotypes"),all=TRUE),age.marker.sum.1)
rownames(age.marker.sum.1.all) <- age.marker.sum.1.all$genotypes
age.marker.sum.1.all.t <- t(age.marker.sum.1.all[-1])
rownames(age.marker.sum.1.all.t) <- gsub("_group","",rownames(age.marker.sum.1.all.t))
age.marker.sum.1.all.t <- as.data.frame(age.marker.sum.1.all.t)
age.marker.sum.1.all.t$diffhethom <- age.marker.sum.1.all.t$AB - age.marker.sum.1.all.t$AA
write.csv(age.marker.sum.1.all.t,"data/mean.differences_group_ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv")

age.marker.sum.2 <- list()
geno.pheno.2a <- geno.pheno.2[-1]
for(i in 1:(ncol(geno.pheno.2a)-13)){
#geno.pheno.2$snp=geno.pheno.2[i]
age.marker.2 <- geno.pheno.2a %>% 
  group_by(geno.pheno.2a[i])  %>%
  summarize(mean_group = mean(as.numeric(group), na.rm =T))


  names(age.marker.2) <- c("genotypes", paste0(names(geno.pheno.2a[i]),"_group"))
  genotypes <- as.data.frame(c("-","AA","AB"))
  names(genotypes) <- c("genotypes")
  age.marker.2 <- merge(genotypes, age.marker.2, by=c("genotypes"), all=T, sort=T)
  #print(age.marker.2)

  age.marker.sum.2[[i]] <- as.data.frame(age.marker.2)
}

age.marker.sum.2.all <- Reduce(function(x, y) merge(x, y, by=c("genotypes"),all=TRUE),age.marker.sum.2)
rownames(age.marker.sum.2.all) <- age.marker.sum.2.all$genotypes
age.marker.sum.2.all.t <- t(age.marker.sum.2.all[-1])
rownames(age.marker.sum.2.all.t) <- gsub("_group","",rownames(age.marker.sum.2.all.t))
age.marker.sum.2.all.t <- as.data.frame(age.marker.sum.2.all.t)
age.marker.sum.2.all.t$diffhethom <- age.marker.sum.2.all.t$AB - age.marker.sum.2.all.t$AA
write.csv(age.marker.sum.2.all.t,"data/mean.differences_group_ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv")


max.g <- max(max.1, max.2)
print(max.g)
[1] 5.857844
min.g <- min(min.1, min.2)
print(min.g)
[1] -5.041677
mse.g <- (mse.1 + mse.2)/2
print(mse.g)
[1] 118.9566

Power

For powercalc the power is returned, along with the proportion of variance explained. LOD threshold set to 3 (which is roughly what is seen for suggestive significance)

## age.of onset


powercalc(cross = "bc",n=length(mice.ids),effect=min.a,sigma2=mse.a,thresh=3,sel.frac=1,theta=0,bio.reps=1)
         power percent.var.explained
[1,] 0.3625458              5.071074
powercalc(cross = "bc",n=length(mice.ids),effect=max.a,sigma2=mse.a,thresh=3,sel.frac=1,theta=0,bio.reps=1)
         power percent.var.explained
[1,] 0.5765674              6.726444
#powercalc("bc",100,31,sigma2=1,sel.frac=1,theta=0)

## group (binary)

powercalc(cross = "bc",n=length(mice.ids),effect=min.g,sigma2=mse.g,thresh=3,sel.frac=1,theta=0,bio.reps=1)
         power percent.var.explained
[1,] 0.3625458              5.071074
powercalc(cross = "bc",n=length(mice.ids),effect=max.g,sigma2=mse.g,thresh=3,sel.frac=1,theta=0,bio.reps=1)
         power percent.var.explained
[1,] 0.5765674              6.726444
## graph

Sample Size (with 80% power)

For samplesize the sample size (rounded up to the nearest integer) is returned along with the proportion of variance explained. LOD threshold set to 3 (which is roughly what is seen for suggestive significance) and 80% power

## age.of onset
samplesize(cross = "bc",effect=min.a,sigma2=mse.a,thresh=3,sel.frac=1,theta=0,bio.reps=1)
     sample.size percent.var.explained
[1,]         390              5.071074
samplesize(cross = "bc",effect=max.a,sigma2=mse.a,thresh=3,sel.frac=1,theta=0,bio.reps=1)
     sample.size percent.var.explained
[1,]         289              6.726444
## group (binary)
samplesize(cross = "bc",effect=min.g,sigma2=mse.g,thresh=3,sel.frac=1,theta=0,bio.reps=1)
     sample.size percent.var.explained
[1,]         390              5.071074
samplesize(cross = "bc",effect=max.g,sigma2=mse.g,thresh=3,sel.frac=1,theta=0,bio.reps=1)
     sample.size percent.var.explained
[1,]         289              6.726444
## graph

R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] qtlDesign_0.941   abind_1.4-5       qtl2_0.24         reshape2_1.4.4   
 [5] ggplot2_3.3.3     tibble_3.0.6      psych_2.0.12      readxl_1.3.1     
 [9] cluster_2.1.0     dplyr_1.0.4       optparse_1.6.6    rhdf5_2.34.0     
[13] mclust_5.4.7      tidyr_1.1.2       data.table_1.13.6 knitr_1.31       
[17] kableExtra_1.3.1  workflowr_1.6.2  

loaded via a namespace (and not attached):
 [1] httr_1.4.2         bit64_4.0.5        viridisLite_0.3.0  tmvnsim_1.0-2     
 [5] assertthat_0.2.1   highr_0.8          blob_1.2.1         cellranger_1.1.0  
 [9] yaml_2.2.1         pillar_1.4.7       RSQLite_2.2.3      lattice_0.20-41   
[13] glue_1.4.2         digest_0.6.27      promises_1.1.1     rvest_0.3.6       
[17] colorspace_2.0-0   htmltools_0.5.1.1  httpuv_1.5.5       plyr_1.8.6        
[21] pkgconfig_2.0.3    purrr_0.3.4        scales_1.1.1       webshot_0.5.2     
[25] getopt_1.20.3      later_1.1.0.1      git2r_0.28.0       generics_0.1.0    
[29] ellipsis_0.3.1     cachem_1.0.3       withr_2.4.1        mnormt_2.0.2      
[33] magrittr_2.0.1     crayon_1.4.1       memoise_2.0.0      evaluate_0.14     
[37] fs_1.5.0           nlme_3.1-152       xml2_1.3.2         tools_4.0.3       
[41] lifecycle_0.2.0    stringr_1.4.0      Rhdf5lib_1.12.1    munsell_0.5.0     
[45] compiler_4.0.3     rlang_0.4.10       grid_4.0.3         rhdf5filters_1.2.1
[49] rstudioapi_0.13    rmarkdown_2.6      gtable_0.3.0       DBI_1.1.1         
[53] R6_2.5.0           fastmap_1.1.0      bit_4.0.4          rprojroot_2.0.2   
[57] stringi_1.5.3      parallel_4.0.3     Rcpp_1.0.10        vctrs_0.3.6       
[61] tidyselect_1.1.0   xfun_0.21