Last updated: 2023-04-14
Checks: 5 2
Knit directory: Serreze-T1D_Workflow/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20230413)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/projects/serreze-lab/USERS/corneb/qtl2/workflowr/2023.04.13/Serreze-T1D_Workflow | . |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 03e83ae. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Untracked files:
Untracked: analysis/0.1.1_preparing.data_bqc_7.batches_myo.Rmd
Untracked: analysis/0.1_samples_batch_20230124.Rmd
Untracked: analysis/0.1_samples_batch_20230225.Rmd
Untracked: analysis/0.1_samples_batch_20230313.Rmd
Untracked: analysis/0.2_haplotype_comparison_bqc_7.batches_myo_minprob.Rmd
Untracked: analysis/2.1_sample_bqc_7.batches_myo.Rmd
Untracked: analysis/2.2.1_snp_qc_7.batches_myo.Rmd
Untracked: analysis/2.2.1_snp_qc_7.batches_myo_mis.Rmd
Untracked: analysis/2.4_preparing.data_aqc_7.batches_myo.Rmd
Untracked: analysis/2.4_preparing.data_aqc_7.batches_myo_mis.Rmd
Untracked: analysis/3.1_phenotype.qc_corrected_7.batches_myo.Rmd
Untracked: analysis/3.1_phenotype.qc_corrected_7.batches_myo_mis.Rmd
Untracked: analysis/4.1.1_qtl.analysis_binary_het-ici-myo-yes.vs.het-ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.R
Untracked: analysis/4.1.1_qtl.analysis_binary_het-ici-myo-yes.vs.het-ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
Untracked: analysis/4.1.1_qtl.analysis_binary_het-ici-myo-yes.vs.het-ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
Untracked: analysis/4.1.1_qtl.analysis_binary_het-ici.vs.het-pbs_snpsqc_dis_no-x_updated_7.batches_myo.R
Untracked: analysis/4.1.1_qtl.analysis_binary_het-ici.vs.het-pbs_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
Untracked: analysis/4.1.1_qtl.analysis_binary_het-ici.vs.het-pbs_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
Untracked: analysis/4.1.1_qtl.analysis_binary_ici-myo-yes.vs.ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.R
Untracked: analysis/4.1.1_qtl.analysis_binary_ici-myo-yes.vs.ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
Untracked: analysis/4.1.1_qtl.analysis_binary_ici-myo-yes.vs.ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
Untracked: analysis/4.1.1_qtl.analysis_binary_ici-sick.vs.ici-eoi_snpsqc_dis_no-x_updated_7.batches_myo.R
Untracked: analysis/4.1.1_qtl.analysis_binary_ici-sick.vs.ici-eoi_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
Untracked: analysis/4.1.1_qtl.analysis_binary_ici-sick.vs.ici-eoi_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
Untracked: analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs_snpsqc_dis_no-x_updated_7.batches_myo.R
Untracked: analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
Untracked: analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
Untracked: analysis/4.1.1_qtl.analysis_binary_myo-yes.vs.myo-no_snpsqc_dis_no-x_updated_7.batches_myo.R
Untracked: analysis/4.1.1_qtl.analysis_binary_myo-yes.vs.myo-no_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
Untracked: analysis/4.1.1_qtl.analysis_binary_myo-yes.vs.myo-no_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
Untracked: analysis/4.1.1_qtl.analysis_binary_pbs-myo-yes.vs.pbs-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.R
Untracked: analysis/4.1.1_qtl.analysis_binary_pbs-myo-yes.vs.pbs-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
Untracked: analysis/4.1.1_qtl.analysis_binary_pbs-myo-yes.vs.pbs-myo-no_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
Untracked: analysis/genotype.frequencies_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo.Rmd
Untracked: analysis/genotype.frequencies_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo_mis.Rmd
Untracked: analysis/genotype.frequencies_het-ici.vs.het-pbs_7.batches_myo.Rmd
Untracked: analysis/genotype.frequencies_het-ici.vs.het-pbs_7.batches_myo_mis.Rmd
Untracked: analysis/genotype.frequencies_ici-myo-yes.vs.ici-myo-no_7.batches_myo.Rmd
Untracked: analysis/genotype.frequencies_ici-myo-yes.vs.ici-myo-no_7.batches_myo_mis.Rmd
Untracked: analysis/genotype.frequencies_ici-sick.vs.ici-eoi_7.batches_myo.Rmd
Untracked: analysis/genotype.frequencies_ici-sick.vs.ici-eoi_7.batches_myo_mis.Rmd
Untracked: analysis/genotype.frequencies_ici.vs.pbs_7.batches_myo.Rmd
Untracked: analysis/genotype.frequencies_ici.vs.pbs_7.batches_myo_mis.Rmd
Untracked: analysis/genotype.frequencies_myo-yes.vs.myo-no_7.batches_myo.Rmd
Untracked: analysis/genotype.frequencies_myo-yes.vs.myo-no_7.batches_myo_mis.Rmd
Untracked: analysis/genotype.frequencies_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo.Rmd
Untracked: analysis/genotype.frequencies_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo_mis.Rmd
Untracked: analysis/index_7.batches_myo.Rmd
Untracked: analysis/power.analysis_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo.Rmd
Untracked: analysis/power.analysis_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo_mis.Rmd
Untracked: analysis/power.analysis_het-ici.vs.het-pbs_7.batches_myo.Rmd
Untracked: analysis/power.analysis_het-ici.vs.het-pbs_7.batches_myo_mis.Rmd
Untracked: analysis/power.analysis_ici-myo-yes.vs.ici-myo-no_7.batches_myo.Rmd
Untracked: analysis/power.analysis_ici-myo-yes.vs.ici-myo-no_7.batches_myo_mis.Rmd
Untracked: analysis/power.analysis_ici-sick.vs.ici-eoi_7.batches_myo.Rmd
Untracked: analysis/power.analysis_ici-sick.vs.ici-eoi_7.batches_myo_mis.Rmd
Untracked: analysis/power.analysis_ici.vs.pbs_7.batches_myo.Rmd
Untracked: analysis/power.analysis_ici.vs.pbs_7batches_myo_mis.Rmd
Untracked: analysis/power.analysis_myo-yes.vs.myo-no_7.batches_myo.Rmd
Untracked: analysis/power.analysis_myo-yes.vs.myo-no_7.batches_myo_mis.Rmd
Untracked: analysis/power.analysis_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo.Rmd
Untracked: analysis/power.analysis_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo_mis.Rmd
Untracked: code/cc_variants.sqlite
Untracked: code/mouse_genes.sqlite
Untracked: code/mouse_genes_mgi.sqlite
Untracked: data/GM_covar_7.batches_myo.csv
Untracked: data/bad_markers_all_7.batches_myo.RData
Untracked: data/covar_corrected.cleaned_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo.csv
Untracked: data/covar_corrected.cleaned_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo_mis.csv
Untracked: data/covar_corrected.cleaned_het-ici.vs.het-pbs_7.batches_myo.csv
Untracked: data/covar_corrected.cleaned_het-ici.vs.het-pbs_7.batches_myo_mis.csv
Untracked: data/covar_corrected.cleaned_ici-myo-yes.vs.ici-myo-no_7.batches_myo.csv
Untracked: data/covar_corrected.cleaned_ici-myo-yes.vs.ici-myo-no_7.batches_myo_mis.csv
Untracked: data/covar_corrected.cleaned_ici-sick.vs.ici-eoi_7.batches_myo.csv
Untracked: data/covar_corrected.cleaned_ici-sick.vs.ici-eoi_7.batches_myo_mis.csv
Untracked: data/covar_corrected.cleaned_ici.vs.pbs_7.batches_myo.csv
Untracked: data/covar_corrected.cleaned_ici.vs.pbs_7.batches_myo_mis.csv
Untracked: data/covar_corrected.cleaned_myo-yes.vs.myo-no_7.batches_myo.csv
Untracked: data/covar_corrected.cleaned_myo-yes.vs.myo-no_7.batches_myo_mis.csv
Untracked: data/covar_corrected.cleaned_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo.csv
Untracked: data/covar_corrected.cleaned_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo_mis.csv
Untracked: data/covar_corrected_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo.csv
Untracked: data/covar_corrected_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo_mis.csv
Untracked: data/covar_corrected_het-ici.vs.het-pbs_7.batches_myo.csv
Untracked: data/covar_corrected_het-ici.vs.het-pbs_7.batches_myo_mis.csv
Untracked: data/covar_corrected_ici-myo-yes.vs.ici-myo-no_7.batches_myo.csv
Untracked: data/covar_corrected_ici-myo-yes.vs.ici-myo-no_7.batches_myo_mis.csv
Untracked: data/covar_corrected_ici-sick.vs.ici-eoi_7.batches_myo.csv
Untracked: data/covar_corrected_ici-sick.vs.ici-eoi_7.batches_myo_mis.csv
Untracked: data/covar_corrected_ici.vs.pbs_7.batches_myo.csv
Untracked: data/covar_corrected_ici.vs.pbs_7.batches_myo_mis.csv
Untracked: data/covar_corrected_myo-yes.vs.myo-no_7.batches_myo.csv
Untracked: data/covar_corrected_myo-yes.vs.myo-no_7.batches_myo_mis.csv
Untracked: data/covar_corrected_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo.csv
Untracked: data/covar_corrected_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo_mis.csv
Untracked: data/e_7.batches_myo.RData
Untracked: data/e_snpg_samqc_7.batches_myo.RData
Untracked: data/errors_ind_7.batches_myo.RData
Untracked: data/genetic_map_7.batches_myo.csv
Untracked: data/genotype_errors_marker_7.batches_myo.RData
Untracked: data/genotype_freq_marker_7.batches_myo.RData
Untracked: data/gm_allqc_7.batches_myo.RData
Untracked: data/gm_allqc_7.batches_myo_mis.RData
Untracked: data/gm_samqc_7.batches_myo.RData
Untracked: data/gm_serreze_7.batches_myo.RData
Untracked: data/gm_serreze_bc_7.batches_myo.RData
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
Untracked: data/het-ici.vs.het-pbs_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/het-ici.vs.het-pbs_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo.csv
Untracked: data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
Untracked: data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/het-ici.vs.het-pbs_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo.csv
Untracked: data/het-ici.vs.het-pbs_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/het-ici.vs.het-pbs_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
Untracked: data/het-ici.vs.het-pbs_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
Untracked: data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
Untracked: data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
Untracked: data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo.csv
Untracked: data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
Untracked: data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-10_peak.marker-UNC18343990_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-10_peak.marker-UNC18343990_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-11_peak.marker-UNC20070077_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-11_peak.marker-UNC20070077_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-12_peak.marker-UNC21652584_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-12_peak.marker-UNC21652584_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-13_peak.marker-UNCHS036579_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-13_peak.marker-UNCHS036579_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-14_peak.marker-UNCHS037782_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-14_peak.marker-UNCHS037782_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-15_peak.marker-UNC26069905_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-15_peak.marker-UNCHS041223_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-16_peak.marker-JAX00070117_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-16_peak.marker-JAX00070117_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-17_peak.marker-UNC28542319_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-17_peak.marker-UNCJPD006670_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-18_peak.marker-UNC28776739_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-18_peak.marker-UNCHS045594_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-19_peak.marker-UNC30414168_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-19_peak.marker-UNC30426276_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-1_peak.marker-UNC2031646_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-1_peak.marker-UNCHS003700_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-2_peak.marker-ICR5131_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-2_peak.marker-UNCHS006420_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-3_peak.marker-UNC5667757_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-3_peak.marker-UNC5667757_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-4_peak.marker-UNC6759992_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-4_peak.marker-UNC6765178_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-5_peak.marker-UNC9889957_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-5_peak.marker-UNC9900273_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-6_peak.marker-UNC10800126_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-6_peak.marker-UNC10832076_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-7_peak.marker-UNCHS020903_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-7_peak.marker-UNCHS021163_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-8_peak.marker-UNC15471847_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-8_peak.marker-UNC15548888_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-9_peak.marker-UNC16231874_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-9_peak.marker-UNC16231874_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-X_peak.marker-UNCHS049472_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_blup_sub_chr-X_peak.marker-UNCHS049472_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-10_peak.marker-UNC18343990_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-10_peak.marker-UNC18343990_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-11_peak.marker-UNC20070077_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-11_peak.marker-UNC20070077_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-12_peak.marker-UNC21652584_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-12_peak.marker-UNC21652584_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-13_peak.marker-UNCHS036579_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-13_peak.marker-UNCHS036579_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-14_peak.marker-UNCHS037782_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-14_peak.marker-UNCHS037782_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-15_peak.marker-UNC26069905_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-15_peak.marker-UNCHS041223_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-16_peak.marker-JAX00070117_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-16_peak.marker-JAX00070117_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-17_peak.marker-UNC28542319_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-17_peak.marker-UNCJPD006670_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-18_peak.marker-UNC28776739_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-18_peak.marker-UNCHS045594_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-19_peak.marker-UNC30414168_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-19_peak.marker-UNC30426276_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-1_peak.marker-UNC2031646_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-1_peak.marker-UNCHS003700_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-2_peak.marker-ICR5131_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-2_peak.marker-UNCHS006420_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-3_peak.marker-UNC5667757_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-3_peak.marker-UNC5667757_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-4_peak.marker-UNC6759992_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-4_peak.marker-UNC6765178_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-5_peak.marker-UNC9889957_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-5_peak.marker-UNC9900273_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-6_peak.marker-UNC10800126_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-6_peak.marker-UNC10832076_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-7_peak.marker-UNCHS020903_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-7_peak.marker-UNCHS021163_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-8_peak.marker-UNC15471847_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-8_peak.marker-UNC15548888_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-9_peak.marker-UNC16231874_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-9_peak.marker-UNC16231874_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-X_peak.marker-UNCHS049472_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_genes_chr-X_peak.marker-UNCHS049472_lod.drop-1.5_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
Untracked: data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/ici-sick.vs.ici-eoi_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
Untracked: data/ici.vs.pbs_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo.csv
Untracked: data/ici.vs.pbs_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/ici.vs.pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
Untracked: data/ici.vs.pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/ici.vs.pbs_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo.csv
Untracked: data/ici.vs.pbs_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/ici.vs.pbs_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
Untracked: data/ici.vs.pbs_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
Untracked: data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
Untracked: data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
Untracked: data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo.csv
Untracked: data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
Untracked: data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/ici.vs.pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
Untracked: data/mean.differences_age.of.onset_ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
Untracked: data/mean.differences_age.of.onset_ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/mean.differences_group_ici.vs.pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
Untracked: data/myo-yes.vs.myo-no_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/myo-yes.vs.myo-no_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo.csv
Untracked: data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
Untracked: data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo.csv
Untracked: data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
Untracked: data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
Untracked: data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
Untracked: data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
Untracked: data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo.csv
Untracked: data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
Untracked: data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_gm_qtl_snpsqc_dis_no-x_updated_7.batches_myo_mis.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo.csv
Untracked: data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
Untracked: data/percent_missing_id_7.batches_myo.RData
Untracked: data/percent_missing_marker_7.batches_myo.RData
Untracked: data/pheno_7.batches_myo.csv
Untracked: data/physical_map_7.batches_myo.csv
Untracked: data/probs_36state_bc_7.batches_myo.rds
Untracked: data/probs_8state_bc_7.batches_myo.rds
Untracked: data/qc_info_bad_sample_7.batches_myo.RData
Untracked: data/sample_geno_AHB_7.batches_myo.csv
Untracked: data/sample_geno_AHB_7.batches_myo_orig.id.csv
Untracked: data/sample_geno_bc_7.batches_myo.csv
Untracked: data/sample_geno_bc_7.batches_myo_orig.id.csv
Untracked: data/serreze_probs_7.batches_myo.rds
Untracked: data/serreze_probs_allqc_7.batches_myo.rds
Untracked: data/serreze_probs_allqc_7.batches_myo_mis.rds
Untracked: data/summary.cg_7.batches_myo.RData
Unstaged changes:
Modified: analysis/_site.yml
Modified: analysis/index.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with wflow_publish()
to start tracking its development.
load("data/gm_allqc_7.batches_myo.RData")
#gm_allqc
gm=gm_allqc
gm
Object of class cross2 (crosstype "bc")
Total individuals 357
No. genotyped individuals 357
No. phenotyped individuals 357
No. with both geno & pheno 357
No. phenotypes 1
No. covariates 11
No. phenotype covariates 0
No. chromosomes 20
Total markers 32660
No. markers by chr:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2482 2412 1742 1772 1648 1842 1541 1517 1769 1092 1754 1230 1441 1505 1128 842
17 18 19 X
655 820 945 4523
#pr <- readRDS("data/serreze_probs_allqc.rds")
#pr <- readRDS("data/serreze_probs.rds")
##extracting animals with ici and pbs group status
##extracting animals
#Myocarditis Status
miceinfo <- gm$covar[gm$covar$"Myocarditis Status" == "YES" | gm$covar$"Myocarditis Status" == "NO",]
#table(miceinfo$group)
#MMurine MHC KO Status
miceinfo <- miceinfo[miceinfo$"Murine MHC KO Status" == "HOM",]
#Drug Treatment
miceinfo <- miceinfo[miceinfo$"Drug Treatment" == "PBS",]
#Clinical Phenotype
miceinfo <- miceinfo[miceinfo$"clinical pheno" == "SICK" | miceinfo$"clinical pheno" == "EOI",]
table(miceinfo$"Myocarditis Status")
NO YES
17 79
table(miceinfo$"Murine MHC KO Status")
HOM
96
table(miceinfo$"Drug Treatment")
PBS
96
table(miceinfo$"clinical pheno")
EOI SICK
64 32
mice.ids <- rownames(miceinfo)
##removing X samples
x.samples = c("NM00179-ICI-EOI","NM00186-ICI-EOI","D22-ICI-EOI","D39-ICI-Myo","D67-ICI-Myo","D111-PBS-Myo","D120-ICI-Myo","6895-PBS-Myo","D704-ICI-Myo")
mice.ids = mice.ids[!as.character(do.call(rbind.data.frame, strsplit(mice.ids, "_"))[,7]) %in% x.samples]
#removing duplicates
dup.samples = c("The_Jackson_Lab_Serreze_MURGIGV01_20230225_D249-PBS-EOI_H3")
mice.ids = mice.ids[!mice.ids %in% dup.samples]
gm <- gm[mice.ids]
gm
Object of class cross2 (crosstype "bc")
Total individuals 96
No. genotyped individuals 96
No. phenotyped individuals 96
No. with both geno & pheno 96
No. phenotypes 1
No. covariates 11
No. phenotype covariates 0
No. chromosomes 20
Total markers 32660
No. markers by chr:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2482 2412 1742 1772 1648 1842 1541 1517 1769 1092 1754 1230 1441 1505 1128 842
17 18 19 X
655 820 945 4523
table(gm$covar$"Myocarditis Status")
NO YES
17 79
table(gm$covar$"Murine MHC KO Status")
HOM
96
table(gm$covar$"Drug Treatment")
PBS
96
table(gm$covar$"clinical pheno")
EOI SICK
64 32
gm$covar$pbs.myo.yes_vs_pbs.myo.no <- ifelse(gm$covar$"Myocarditis Status" == "NO", 0, 1)
gm$covar$group = gm$covar$pbs.myo.yes_vs_pbs.myo.no
##loading genotypes
genos.1 <- read.csv("data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv")
dim(genos.1)
[1] 26651 107
genos.1 <- genos.1[genos.1$Include,]
dim(genos.1)
[1] 7811 107
#dis.genos.1 <- read.csv("data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv")
#dim(dis.genos.1)
rownames(genos.1) <- genos.1$marker
genos.1 <- t(genos.1[3:(ncol(genos.1)-9)])
rownames(genos.1) <- gsub("\\.","-",rownames(genos.1))
genos.2<- read.csv("data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv")
dim(genos.2)
[1] 26649 103
genos.2 <- genos.2[genos.2$Include,]
dim(genos.2)
[1] 7581 103
#dis.genos.2 <- read.csv("data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv")
rownames(genos.2) <- genos.2$marker
genos.2 <- t(genos.2[3:(ncol(genos.2)-9)])
rownames(genos.2) <- gsub("\\.","-",rownames(genos.2))
##merge with phenotypes (age.of.onset & binary)
names(gm$covar)[6] <- c("age.of.onset")
gm$covar$age.of.onset <- as.numeric(gm$covar$age.of.onset)
#if(0 %in% unique(gm$covar$age.of.onset)){
gm$covar[gm$covar$age.of.onset==0 | is.na(gm$covar$age.of.onset) | gm$covar$age.of.onset=="NA" ,]$age.of.onset = ""
gm$covar[gm$covar$age.of.onset=='' ,]$age.of.onset <- 40
gm$covar$age.of.onset <- as.numeric(gm$covar$age.of.onset)
geno.pheno.1 <- merge(data.frame(genos.1), gm$covar, by="row.names", all.x=T, sort=F)
aov.1 <- stats::aov(age.of.onset ~ group, geno.pheno.1)
mse.1 <- mean(aov.1$residuals^2)
geno.pheno.2 <- merge(data.frame(genos.2), gm$covar, by="row.names", all.x=T, sort=F)
aov.2 <- stats::aov(age.of.onset ~ group, geno.pheno.2)
mse.2 <- mean(aov.2$residuals^2)
## calculating effect (age.of.onset)
age.marker.sum.1 <- list()
geno.pheno.1a <- geno.pheno.1[-1]
for(i in 1:(ncol(geno.pheno.1a)-13)){
#geno.pheno.1$snp=geno.pheno.1[i]
age.marker.1 <- geno.pheno.1a %>%
group_by(geno.pheno.1a[i]) %>%
summarize(mean_age.of.onset = mean(as.numeric(age.of.onset), na.rm =T))
names(age.marker.1) <- c("genotypes", paste0(names(geno.pheno.1a[i]),"_age.of.onset"))
genotypes <- as.data.frame(c("-","AA","AB"))
names(genotypes) <- c("genotypes")
age.marker.1 <- merge(genotypes, age.marker.1, by=c("genotypes"), all=T, sort=T)
#print(age.marker.1)
age.marker.sum.1[[i]] <- as.data.frame(age.marker.1)
}
age.marker.sum.1.all <- Reduce(function(x, y) merge(x, y, by=c("genotypes"),all=TRUE),age.marker.sum.1)
rownames(age.marker.sum.1.all) <- age.marker.sum.1.all$genotypes
age.marker.sum.1.all.t <- t(age.marker.sum.1.all[-1])
rownames(age.marker.sum.1.all.t) <- gsub("_age.of.onset","",rownames(age.marker.sum.1.all.t))
age.marker.sum.1.all.t <- as.data.frame(age.marker.sum.1.all.t)
age.marker.sum.1.all.t$diffhethom <- age.marker.sum.1.all.t$AB - age.marker.sum.1.all.t$AA
max.1 <- max(age.marker.sum.1.all.t$diffhethom)
min.1 <- min(age.marker.sum.1.all.t$diffhethom)
write.csv(age.marker.sum.1.all.t,"data/mean.differences_age.of.onset_pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv")
age.marker.sum.2 <- list()
geno.pheno.2a <- geno.pheno.2[-1]
for(i in 1:(ncol(geno.pheno.2a)-13)){
#geno.pheno.2$snp=geno.pheno.2[i]
age.marker.2 <- geno.pheno.2a %>%
group_by(geno.pheno.2a[i]) %>%
summarize(mean_age.of.onset = mean(as.numeric(age.of.onset), na.rm =T))
names(age.marker.2) <- c("genotypes", paste0(names(geno.pheno.2a[i]),"_age.of.onset"))
genotypes <- as.data.frame(c("-","AA","AB"))
names(genotypes) <- c("genotypes")
age.marker.2 <- merge(genotypes, age.marker.2, by=c("genotypes"), all=T, sort=T)
#print(age.marker.2)
age.marker.sum.2[[i]] <- as.data.frame(age.marker.2)
}
age.marker.sum.2.all <- Reduce(function(x, y) merge(x, y, by=c("genotypes"),all=TRUE),age.marker.sum.2)
rownames(age.marker.sum.2.all) <- age.marker.sum.2.all$genotypes
age.marker.sum.2.all.t <- t(age.marker.sum.2.all[-1])
rownames(age.marker.sum.2.all.t) <- gsub("_age.of.onset","",rownames(age.marker.sum.2.all.t))
age.marker.sum.2.all.t <- as.data.frame(age.marker.sum.2.all.t)
age.marker.sum.2.all.t$diffhethom <- age.marker.sum.2.all.t$AB - age.marker.sum.2.all.t$AA
max.2 <- max(age.marker.sum.2.all.t$diffhethom)
min.2 <- min(age.marker.sum.2.all.t$diffhethom)
write.csv(age.marker.sum.2.all.t,"data/mean.differences_age.of.onset_pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv")
max.a <- max(max.1, max.2)
print(max.a)
[1] 5.529413
min.a <- min(min.1, min.2)
print(min.a)
[1] -5.612837
mse.a <- (mse.1 + mse.2)/2
print(mse.a)
[1] 76.18654
## calculating effect (group)
age.marker.sum.1 <- list()
geno.pheno.1a <- geno.pheno.1[-1]
for(i in 1:(ncol(geno.pheno.1a)-13)){
#geno.pheno.1$snp=geno.pheno.1[i]
age.marker.1 <- geno.pheno.1a %>%
group_by(geno.pheno.1a[i]) %>%
summarize(mean_group = mean(as.numeric(group), na.rm =T))
names(age.marker.1) <- c("genotypes", paste0(names(geno.pheno.1a[i]),"_group"))
genotypes <- as.data.frame(c("-","AA","AB"))
names(genotypes) <- c("genotypes")
age.marker.1 <- merge(genotypes, age.marker.1, by=c("genotypes"), all=T, sort=T)
#print(age.marker.1)
age.marker.sum.1[[i]] <- as.data.frame(age.marker.1)
}
age.marker.sum.1.all <- Reduce(function(x, y) merge(x, y, by=c("genotypes"),all=TRUE),age.marker.sum.1)
rownames(age.marker.sum.1.all) <- age.marker.sum.1.all$genotypes
age.marker.sum.1.all.t <- t(age.marker.sum.1.all[-1])
rownames(age.marker.sum.1.all.t) <- gsub("_group","",rownames(age.marker.sum.1.all.t))
age.marker.sum.1.all.t <- as.data.frame(age.marker.sum.1.all.t)
age.marker.sum.1.all.t$diffhethom <- age.marker.sum.1.all.t$AB - age.marker.sum.1.all.t$AA
write.csv(age.marker.sum.1.all.t,"data/mean.differences_group_pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo.csv")
age.marker.sum.2 <- list()
geno.pheno.2a <- geno.pheno.2[-1]
for(i in 1:(ncol(geno.pheno.2a)-13)){
#geno.pheno.2$snp=geno.pheno.2[i]
age.marker.2 <- geno.pheno.2a %>%
group_by(geno.pheno.2a[i]) %>%
summarize(mean_group = mean(as.numeric(group), na.rm =T))
names(age.marker.2) <- c("genotypes", paste0(names(geno.pheno.2a[i]),"_group"))
genotypes <- as.data.frame(c("-","AA","AB"))
names(genotypes) <- c("genotypes")
age.marker.2 <- merge(genotypes, age.marker.2, by=c("genotypes"), all=T, sort=T)
#print(age.marker.2)
age.marker.sum.2[[i]] <- as.data.frame(age.marker.2)
}
age.marker.sum.2.all <- Reduce(function(x, y) merge(x, y, by=c("genotypes"),all=TRUE),age.marker.sum.2)
rownames(age.marker.sum.2.all) <- age.marker.sum.2.all$genotypes
age.marker.sum.2.all.t <- t(age.marker.sum.2.all[-1])
rownames(age.marker.sum.2.all.t) <- gsub("_group","",rownames(age.marker.sum.2.all.t))
age.marker.sum.2.all.t <- as.data.frame(age.marker.sum.2.all.t)
age.marker.sum.2.all.t$diffhethom <- age.marker.sum.2.all.t$AB - age.marker.sum.2.all.t$AA
write.csv(age.marker.sum.2.all.t,"data/mean.differences_group_pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo.csv")
max.g <- max(max.1, max.2)
print(max.g)
[1] 5.529413
min.g <- min(min.1, min.2)
print(min.g)
[1] -5.612837
mse.g <- (mse.1 + mse.2)/2
print(mse.g)
[1] 76.18654
For powercalc the power is returned, along with the proportion of variance explained. LOD threshold set to 3 (which is roughly what is seen for suggestive significance)
## age.of onset
powercalc(cross = "bc",n=length(mice.ids),effect=min.a,sigma2=mse.a,thresh=3,sel.frac=1,theta=0,bio.reps=1)
power percent.var.explained
[1,] 0.285478 9.369197
powercalc(cross = "bc",n=length(mice.ids),effect=max.a,sigma2=mse.a,thresh=3,sel.frac=1,theta=0,bio.reps=1)
power percent.var.explained
[1,] 0.269784 9.117965
#powercalc("bc",100,31,sigma2=1,sel.frac=1,theta=0)
## group (binary)
powercalc(cross = "bc",n=length(mice.ids),effect=min.g,sigma2=mse.g,thresh=3,sel.frac=1,theta=0,bio.reps=1)
power percent.var.explained
[1,] 0.285478 9.369197
powercalc(cross = "bc",n=length(mice.ids),effect=max.g,sigma2=mse.g,thresh=3,sel.frac=1,theta=0,bio.reps=1)
power percent.var.explained
[1,] 0.269784 9.117965
## graph
For samplesize the sample size (rounded up to the nearest integer) is returned along with the proportion of variance explained. LOD threshold set to 3 (which is roughly what is seen for suggestive significance) and 80% power
## age.of onset
samplesize(cross = "bc",effect=min.a,sigma2=mse.a,thresh=3,sel.frac=1,theta=0,bio.reps=1)
sample.size percent.var.explained
[1,] 202 9.369197
samplesize(cross = "bc",effect=max.a,sigma2=mse.a,thresh=3,sel.frac=1,theta=0,bio.reps=1)
sample.size percent.var.explained
[1,] 208 9.117965
## group (binary)
samplesize(cross = "bc",effect=min.g,sigma2=mse.g,thresh=3,sel.frac=1,theta=0,bio.reps=1)
sample.size percent.var.explained
[1,] 202 9.369197
samplesize(cross = "bc",effect=max.g,sigma2=mse.g,thresh=3,sel.frac=1,theta=0,bio.reps=1)
sample.size percent.var.explained
[1,] 208 9.117965
## graph
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.5 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] qtlDesign_0.941 abind_1.4-5 qtl2_0.24 reshape2_1.4.4
[5] ggplot2_3.3.3 tibble_3.0.6 psych_2.0.12 readxl_1.3.1
[9] cluster_2.1.0 dplyr_1.0.4 optparse_1.6.6 rhdf5_2.34.0
[13] mclust_5.4.7 tidyr_1.1.2 data.table_1.13.6 knitr_1.31
[17] kableExtra_1.3.1 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] httr_1.4.2 bit64_4.0.5 viridisLite_0.3.0 tmvnsim_1.0-2
[5] assertthat_0.2.1 highr_0.8 blob_1.2.1 cellranger_1.1.0
[9] yaml_2.2.1 pillar_1.4.7 RSQLite_2.2.3 lattice_0.20-41
[13] glue_1.4.2 digest_0.6.27 promises_1.1.1 rvest_0.3.6
[17] colorspace_2.0-0 htmltools_0.5.1.1 httpuv_1.5.5 plyr_1.8.6
[21] pkgconfig_2.0.3 purrr_0.3.4 scales_1.1.1 webshot_0.5.2
[25] getopt_1.20.3 later_1.1.0.1 git2r_0.28.0 generics_0.1.0
[29] ellipsis_0.3.1 cachem_1.0.3 withr_2.4.1 mnormt_2.0.2
[33] magrittr_2.0.1 crayon_1.4.1 memoise_2.0.0 evaluate_0.14
[37] fs_1.5.0 nlme_3.1-152 xml2_1.3.2 tools_4.0.3
[41] lifecycle_0.2.0 stringr_1.4.0 Rhdf5lib_1.12.1 munsell_0.5.0
[45] compiler_4.0.3 rlang_0.4.10 grid_4.0.3 rhdf5filters_1.2.1
[49] rstudioapi_0.13 rmarkdown_2.6 gtable_0.3.0 DBI_1.1.1
[53] R6_2.5.0 fastmap_1.1.0 bit_4.0.4 rprojroot_2.0.2
[57] stringi_1.5.3 parallel_4.0.3 Rcpp_1.0.10 vctrs_0.3.6
[61] tidyselect_1.1.0 xfun_0.21