==================================== Using LoincHPO ==================================== **Simple Use Case** ------------------- #. Parse the annotations from (https://github.com/TheJacksonLaboratory/loinc2hpoAnnotation) using AnnotationParser:: # If you loaded the annotations into a pandas df: annotations = AnnotationParser.parse_annotations(dataframe) # If you simply have the file: annotations = AnnotationParser.parse_annotation_file(annotation_path) #. Create your queries:: # From a file: queries = QueryFileParser.parse(query_path) # A single query: query = Query(loinc_id, outcome) #. Resolve the hpo term:: resolver = QueryResolver(annotations) hpo_term = resolver.resolve(query) **OMOP Common Data Model** (Requires Spark) ------------------------------------------- For a more detailed description on the way we transform OMOP measurements to Human Phenotype Ontology terms :ref:`visit here `. You will need the major tables **Concept**, **Concept Synonym**, **Measurement**. If you have the tables in a file format use:: parser = ClinicalTableParser() concept = parser.parse_table("/some/file/path", ClinicalTableName.CONCEPT, your_spark_session) ... the 2 other tables df = OMOPTransformer.transform(concept, concept_synonym, measurement) If you have the tables in spark df already:: df = OMOPTransformer.transform(concept, concept_synonym, measurement)