Last updated: 2020-10-23
Checks: 7 0
Knit directory: DO_Opioid/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200504)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 0884b85. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .RData
Ignored: analysis/Picture1.png
Untracked files:
Untracked: Rplots.pdf
Untracked: analysis/DDO_morphine1_second_set_69k.stdout
Untracked: analysis/DO_morphine1.R
Untracked: analysis/DO_morphine1.Rout
Untracked: analysis/DO_morphine1.sh
Untracked: analysis/DO_morphine1.stderr
Untracked: analysis/DO_morphine1.stdout
Untracked: analysis/DO_morphine1_SNP.R
Untracked: analysis/DO_morphine1_SNP.Rout
Untracked: analysis/DO_morphine1_SNP.sh
Untracked: analysis/DO_morphine1_SNP.stderr
Untracked: analysis/DO_morphine1_SNP.stdout
Untracked: analysis/DO_morphine1_combined.R
Untracked: analysis/DO_morphine1_combined.Rout
Untracked: analysis/DO_morphine1_combined.sh
Untracked: analysis/DO_morphine1_combined.stderr
Untracked: analysis/DO_morphine1_combined.stdout
Untracked: analysis/DO_morphine1_combined_69k.R
Untracked: analysis/DO_morphine1_combined_69k.Rout
Untracked: analysis/DO_morphine1_combined_69k.sh
Untracked: analysis/DO_morphine1_combined_69k.stderr
Untracked: analysis/DO_morphine1_combined_69k.stdout
Untracked: analysis/DO_morphine1_combined_69k_m2.R
Untracked: analysis/DO_morphine1_combined_69k_m2.Rout
Untracked: analysis/DO_morphine1_combined_69k_m2.sh
Untracked: analysis/DO_morphine1_combined_69k_m2.stderr
Untracked: analysis/DO_morphine1_combined_69k_m2.stdout
Untracked: analysis/DO_morphine1_combined_weight_DOB.R
Untracked: analysis/DO_morphine1_combined_weight_DOB.Rout
Untracked: analysis/DO_morphine1_combined_weight_DOB.err
Untracked: analysis/DO_morphine1_combined_weight_DOB.out
Untracked: analysis/DO_morphine1_combined_weight_DOB.sh
Untracked: analysis/DO_morphine1_combined_weight_DOB.stderr
Untracked: analysis/DO_morphine1_combined_weight_DOB.stdout
Untracked: analysis/DO_morphine1_combined_weight_age.R
Untracked: analysis/DO_morphine1_combined_weight_age.err
Untracked: analysis/DO_morphine1_combined_weight_age.out
Untracked: analysis/DO_morphine1_combined_weight_age.sh
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT.R
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT.err
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT.out
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT.sh
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT_chr19.R
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT_chr19.err
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT_chr19.out
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT_chr19.sh
Untracked: analysis/DO_morphine1_cph.R
Untracked: analysis/DO_morphine1_cph.Rout
Untracked: analysis/DO_morphine1_cph.sh
Untracked: analysis/DO_morphine1_second_set.R
Untracked: analysis/DO_morphine1_second_set.Rout
Untracked: analysis/DO_morphine1_second_set.sh
Untracked: analysis/DO_morphine1_second_set.stderr
Untracked: analysis/DO_morphine1_second_set.stdout
Untracked: analysis/DO_morphine1_second_set_69k.R
Untracked: analysis/DO_morphine1_second_set_69k.Rout
Untracked: analysis/DO_morphine1_second_set_69k.sh
Untracked: analysis/DO_morphine1_second_set_69k.stderr
Untracked: analysis/DO_morphine1_second_set_SNP.R
Untracked: analysis/DO_morphine1_second_set_SNP.Rout
Untracked: analysis/DO_morphine1_second_set_SNP.sh
Untracked: analysis/DO_morphine1_second_set_SNP.stderr
Untracked: analysis/DO_morphine1_second_set_SNP.stdout
Untracked: analysis/DO_morphine1_second_set_weight_DOB.R
Untracked: analysis/DO_morphine1_second_set_weight_DOB.Rout
Untracked: analysis/DO_morphine1_second_set_weight_DOB.err
Untracked: analysis/DO_morphine1_second_set_weight_DOB.out
Untracked: analysis/DO_morphine1_second_set_weight_DOB.sh
Untracked: analysis/DO_morphine1_second_set_weight_DOB.stderr
Untracked: analysis/DO_morphine1_second_set_weight_DOB.stdout
Untracked: analysis/DO_morphine1_second_set_weight_age.R
Untracked: analysis/DO_morphine1_second_set_weight_age.Rout
Untracked: analysis/DO_morphine1_second_set_weight_age.err
Untracked: analysis/DO_morphine1_second_set_weight_age.out
Untracked: analysis/DO_morphine1_second_set_weight_age.sh
Untracked: analysis/DO_morphine1_second_set_weight_age.stderr
Untracked: analysis/DO_morphine1_second_set_weight_age.stdout
Untracked: analysis/DO_morphine1_weight_DOB.R
Untracked: analysis/DO_morphine1_weight_DOB.sh
Untracked: analysis/DO_morphine1_weight_age.R
Untracked: analysis/DO_morphine1_weight_age.sh
Untracked: analysis/Plot_DO_morphine1_SNP.R
Untracked: analysis/Plot_DO_morphine1_SNP.Rout
Untracked: analysis/Plot_DO_morphine1_SNP.sh
Untracked: analysis/Plot_DO_morphine1_SNP.stderr
Untracked: analysis/Plot_DO_morphine1_SNP.stdout
Untracked: analysis/Plot_DO_morphine1_second_set_SNP.R
Untracked: analysis/Plot_DO_morphine1_second_set_SNP.Rout
Untracked: analysis/Plot_DO_morphine1_second_set_SNP.sh
Untracked: analysis/Plot_DO_morphine1_second_set_SNP.stderr
Untracked: analysis/Plot_DO_morphine1_second_set_SNP.stdout
Untracked: analysis/workflow_proc.R
Untracked: analysis/workflow_proc.sh
Untracked: analysis/workflow_proc.stderr
Untracked: analysis/workflow_proc.stdout
Untracked: data/69k_grid_pgmap.RData
Untracked: data/GM_covar.csv
Untracked: data/GM_covar_07092018_morphine.csv
Untracked: data/MasterMorphine Second Set DO w DOB2.xlsx
Untracked: data/MasterMorphine Second Set DO.xlsx
Untracked: data/cc_variants.sqlite
Untracked: data/combined_batch.bed
Untracked: data/combined_batch.bim
Untracked: data/combined_batch.fam
Untracked: data/combined_batch.log
Untracked: data/combined_batch.nosex
Untracked: data/combined_batch_19.bed
Untracked: data/combined_batch_19.bim
Untracked: data/combined_batch_19.fam
Untracked: data/combined_batch_19.log
Untracked: data/combined_batch_19.nosex
Untracked: data/combined_update_id.txt
Untracked: data/founder_geno.csv
Untracked: data/genetic_map.csv
Untracked: data/gm.json
Untracked: data/marker_grid_0.02cM_plus.txt
Untracked: data/mouse_genes_mgi.sqlite
Untracked: data/mysnps.txt
Untracked: data/pheno.csv
Untracked: data/pheno_qtl2.csv
Untracked: data/pheno_qtl2_07092018_morphine.csv
Untracked: data/pheno_qtl2_w_dob.csv
Untracked: data/physical_map.csv
Untracked: data/sample_geno.csv
Untracked: output/DO_morphine_Min.depression.png
Untracked: output/DO_morphine_Min.depression22222_violin_chr5.pdf
Untracked: output/DO_morphine_Min.depression_coefplot.pdf
Untracked: output/DO_morphine_Min.depression_coefplot_blup.pdf
Untracked: output/DO_morphine_Min.depression_coefplot_blup_chr5.png
Untracked: output/DO_morphine_Min.depression_coefplot_blup_chrX.png
Untracked: output/DO_morphine_Min.depression_coefplot_chr5.png
Untracked: output/DO_morphine_Min.depression_coefplot_chrX.png
Untracked: output/DO_morphine_Min.depression_peak_genes_chr5.png
Untracked: output/DO_morphine_Min.depression_violin_chr5.png
Untracked: output/DO_morphine_Recovery.Time.png
Untracked: output/DO_morphine_Recovery.Time_coefplot.pdf
Untracked: output/DO_morphine_Recovery.Time_coefplot_blup.pdf
Untracked: output/DO_morphine_Recovery.Time_coefplot_blup_chr11.png
Untracked: output/DO_morphine_Recovery.Time_coefplot_blup_chr4.png
Untracked: output/DO_morphine_Recovery.Time_coefplot_blup_chr7.png
Untracked: output/DO_morphine_Recovery.Time_coefplot_blup_chr9.png
Untracked: output/DO_morphine_Recovery.Time_coefplot_chr11.png
Untracked: output/DO_morphine_Recovery.Time_coefplot_chr4.png
Untracked: output/DO_morphine_Recovery.Time_coefplot_chr7.png
Untracked: output/DO_morphine_Recovery.Time_coefplot_chr9.png
Untracked: output/DO_morphine_Status_bin.png
Untracked: output/DO_morphine_Status_bin_coefplot.pdf
Untracked: output/DO_morphine_Status_bin_coefplot_blup.pdf
Untracked: output/DO_morphine_Survival.Time.png
Untracked: output/DO_morphine_Survival.Time_coefplot.pdf
Untracked: output/DO_morphine_Survival.Time_coefplot_blup.pdf
Untracked: output/DO_morphine_Survival.Time_coefplot_blup_chr17.png
Untracked: output/DO_morphine_Survival.Time_coefplot_blup_chr8.png
Untracked: output/DO_morphine_Survival.Time_coefplot_chr17.png
Untracked: output/DO_morphine_Survival.Time_coefplot_chr8.png
Untracked: output/DO_morphine_combine_batch_peak_violin.pdf
Untracked: output/DO_morphine_combined_69k_m2_Min.depression.png
Untracked: output/DO_morphine_combined_69k_m2_Min.depression_coefplot.pdf
Untracked: output/DO_morphine_combined_69k_m2_Min.depression_coefplot_blup.pdf
Untracked: output/DO_morphine_combined_69k_m2_Recovery.Time.png
Untracked: output/DO_morphine_combined_69k_m2_Recovery.Time_coefplot.pdf
Untracked: output/DO_morphine_combined_69k_m2_Recovery.Time_coefplot_blup.pdf
Untracked: output/DO_morphine_combined_69k_m2_Status_bin.png
Untracked: output/DO_morphine_combined_69k_m2_Status_bin_coefplot.pdf
Untracked: output/DO_morphine_combined_69k_m2_Status_bin_coefplot_blup.pdf
Untracked: output/DO_morphine_combined_69k_m2_Survival.Time.png
Untracked: output/DO_morphine_combined_69k_m2_Survival.Time_coefplot.pdf
Untracked: output/DO_morphine_combined_69k_m2_Survival.Time_coefplot_blup.pdf
Untracked: output/DO_morphine_coxph_24hrs_kinship_QTL.png
Untracked: output/DO_morphine_cphout.RData
Untracked: output/DO_morphine_first_batch_peak_violin.pdf
Untracked: output/DO_morphine_operm.cph.RData
Untracked: output/DO_morphine_second_batch_on_first_batch_peak_violin.pdf
Untracked: output/DO_morphine_second_batch_peak_ch6surv_on_first_batchviolin.pdf
Untracked: output/DO_morphine_second_batch_peak_ch6surv_on_first_batchviolin2.pdf
Untracked: output/DO_morphine_second_batch_peak_violin.pdf
Untracked: output/DO_morphine_secondbatch_69k_Min.depression.png
Untracked: output/DO_morphine_secondbatch_69k_Min.depression_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_69k_Min.depression_coefplot_blup.pdf
Untracked: output/DO_morphine_secondbatch_69k_Recovery.Time.png
Untracked: output/DO_morphine_secondbatch_69k_Recovery.Time_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_69k_Recovery.Time_coefplot_blup.pdf
Untracked: output/DO_morphine_secondbatch_69k_Status_bin.png
Untracked: output/DO_morphine_secondbatch_69k_Status_bin_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_69k_Status_bin_coefplot_blup.pdf
Untracked: output/DO_morphine_secondbatch_69k_Survival.Time.png
Untracked: output/DO_morphine_secondbatch_69k_Survival.Time_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_69k_Survival.Time_coefplot_blup.pdf
Untracked: output/DO_morphine_secondbatch_Min.depression.png
Untracked: output/DO_morphine_secondbatch_Min.depression_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_Min.depression_coefplot_blup.pdf
Untracked: output/DO_morphine_secondbatch_Recovery.Time.png
Untracked: output/DO_morphine_secondbatch_Recovery.Time_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_Recovery.Time_coefplot_blup.pdf
Untracked: output/DO_morphine_secondbatch_Status_bin.png
Untracked: output/DO_morphine_secondbatch_Status_bin_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_Status_bin_coefplot_blup.pdf
Untracked: output/DO_morphine_secondbatch_Survival.Time.png
Untracked: output/DO_morphine_secondbatch_Survival.Time_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_Survival.Time_coefplot_blup.pdf
Untracked: output/apr_69kchr_combined.RData
Untracked: output/apr_69kchr_k_loco_combined.rds
Untracked: output/apr_69kchr_second_set.RData
Untracked: output/combine_batch_variation.RData
Untracked: output/combined_gm.RData
Untracked: output/combined_gm.k_loco.rds
Untracked: output/combined_gm.k_overall.rds
Untracked: output/combined_gm.probs_36state.rds
Untracked: output/combined_gm.probs_8state.rds
Untracked: output/coxph/
Untracked: output/do.morphine.RData
Untracked: output/do.morphine.k_loco.rds
Untracked: output/do.morphine.probs_36state.rds
Untracked: output/do.morphine.probs_8state.rds
Untracked: output/first_batch_variation.RData
Untracked: output/old_temp/
Untracked: output/pr_69k_combined.RData
Untracked: output/pr_69kchr_combined.RData
Untracked: output/pr_69kchr_second_set.RData
Untracked: output/qtl.morphine.69k.out.combined.RData
Untracked: output/qtl.morphine.69k.out.combined_m2.RData
Untracked: output/qtl.morphine.69k.out.second_set.RData
Untracked: output/qtl.morphine.operm.RData
Untracked: output/qtl.morphine.out.RData
Untracked: output/qtl.morphine.out.combined_gm.RData
Untracked: output/qtl.morphine.out.combined_weight_DOB.RData
Untracked: output/qtl.morphine.out.combined_weight_age.RData
Untracked: output/qtl.morphine.out.second_set.RData
Untracked: output/qtl.morphine.out.second_set.weight_DOB.RData
Untracked: output/qtl.morphine.out.second_set.weight_age.RData
Untracked: output/qtl.morphine.out.weight_DOB.RData
Untracked: output/qtl.morphine.out.weight_age.RData
Untracked: output/qtl.morphine1.snpout.RData
Untracked: output/qtl.morphine2.snpout.RData
Untracked: output/second_batch_variation.RData
Untracked: output/second_set_apr_69kchr_k_loco.rds
Untracked: output/second_set_gm.RData
Untracked: output/second_set_gm.k_loco.rds
Untracked: output/second_set_gm.probs_36state.rds
Untracked: output/second_set_gm.probs_8state.rds
Untracked: output/topSNP_chr5_mindepression.csv
Unstaged changes:
Modified: _workflowr.yml
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/marker_violin.Rmd
) and HTML (docs/marker_violin.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 0884b85 | xhyuo | 2020-10-23 | violin |
# loading libraries -----------------------------------------------------------------------
library("ggplot2")
library("gridExtra")
library("qtl2")
library("openxlsx")
options(stringsAsFactors = F)
rz.transform <- function(y) {
rankY=rank(y, ties.method="average", na.last="keep")
rzT=qnorm(rankY/(length(na.exclude(rankY))+1))
return(rzT)
}
###first batch
#variation explained
#first batch
# Read phenotype data -----------------------------------------------------
do.pheno <- read.csv("data/pheno_qtl2_w_dob.csv")
do.pheno$DOB[do.pheno$DOB == "#N/A"] <- NA
#covar
GM_covar <- read.csv("data/GM_covar_07092018_morphine.csv",header = T)
rownames(GM_covar) <- gsub("morphine_DO_jbubier_","", GM_covar$id)
do.pheno <- merge(do.pheno, GM_covar, by.x = "X", by.y = "X", all.x = TRUE)
do.pheno$Survival.Time <- as.numeric(do.pheno$Survival.Time)
do.pheno$Recovery.Time <- as.numeric(do.pheno$Recovery.Time)
do.pheno$Min.depression <- as.numeric(do.pheno$Min.depression)
do.pheno$sex <- as.factor(do.pheno$sex)
rownames(do.pheno) <- gsub("morphine_DO_jbubier_","", do.pheno$X)
do.pheno$age <- as.Date(do.pheno$DOT) - as.Date(do.pheno$DOB, "%m/%d/%y")
# Read genotype data -----------------------------------------------------------
#load json file
do <- read_cross2(file="data/gm.json")
#ind_ids(do)
#replace id names
old_ids <- paste0(as.character(do.call(rbind.data.frame, strsplit(ind_ids(do), "_"))[,6]),"_",
as.character(do.call(rbind.data.frame, strsplit(ind_ids(do), "_"))[,7]))
new_ids <- setNames(old_ids,
ind_ids(do))
do <- replace_ids(do, new_ids)
#
#morphine pheno
morphine.pheno <- read.csv("data/pheno_qtl2_07092018_morphine.csv",header = T)
rownames(morphine.pheno) <- gsub("morphine_DO_jbubier_","", morphine.pheno$X)
morphine.pheno <- morphine.pheno[rownames(do.pheno),]
# #subset DO to DO morphine data
morphine.id <- rownames(morphine.pheno)
#subset
do.morphine <- do[morphine.id,]
#pmap and gmap
chr.names <- c("1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19", "X")
gmap <- list()
pmap <- list()
for (chr in chr.names){
gmap[[chr]] <- do.morphine$gmap[[chr]]
pmap[[chr]] <- do.morphine$pmap[[chr]]
}
attr(gmap, "is_x_chr") <- structure(c(rep(FALSE,19),TRUE), names=1:20)
attr(pmap, "is_x_chr") <- structure(c(rep(FALSE,19),TRUE), names=1:20)
#addcovar
do.pheno$DOT <- as.factor(do.pheno$DOT)
options(na.action='na.pass')
addcovar = model.matrix(~sex + weight + age + DOT, data = do.pheno)[,-1]
colnames(addcovar)[1] <- "sex"
pheno.name <- c("Survival.Time", "Recovery.Time", "Min.depression")
#variation by covariates
first_batch_var <- list()
for(i in pheno.name){
linearMod <- lm(do.pheno[,i] ~ sex + weight + age + DOT, data=do.pheno, na.action = na.omit) # build linear regression model on full data
#print(linearMod)
first_batch_var[[i]] <- summary(linearMod)$r.squared
}
#find peaks for every trait
load("output/qtl.morphine.out.weight_age.RData")
aprobs <- readRDS("output/do.morphine.probs_8state.rds")
g <- px <- first_batch_peak_var <- peaks <- p1 <- list()
pdf("output/DO_morphine_first_batch_peak_violin.pdf")
for(i in pheno.name){
peaks[[i]] <- qtl.morphine.peaks[[i]][which.max(qtl.morphine.peaks[[i]]$lod),]
marker <- find_marker(pmap, peaks[[i]]$chr, pos=peaks[[i]]$pos)
chr = peaks[[i]]$chr
peak_Mbp <- pmap[[chr]][marker]
g[[i]] <- maxmarg(aprobs, do.morphine$gmap, minprob = 0.4, chr=chr, pos=peaks[[i]]$pos, return_char = TRUE)
g[[i]] <- g[[i]][rownames(morphine.pheno)]
stopifnot(all.equal(names(g[[i]]), rownames(morphine.pheno)))
#variation
marker_apr <- pull_genoprobpos(aprobs, marker=marker)
linearMod <- lm(do.pheno[,i] ~ sex + weight + age + DOT + marker_apr, data=do.pheno, na.action = na.omit) # build linear regression model on full data
#print(linearMod)
first_batch_peak_var[[i]] <- summary(linearMod)$r.squared
px[[i]] <- cbind(g[[i]], morphine.pheno)
colnames(px[[i]])[1] <- "Strain"
#px[[i]] <- px[!is.na(px$Strain),]
px[[i]]$Strain <- factor(px[[i]]$Strain, levels = LETTERS[1:8])
#plot violin
p1[[i]] <- ggplot(data = px[[i]][!is.na(px[[i]]$Strain),], aes_string(x="Strain", y=i, group="Strain", fill="Strain")) +
geom_violin() +
geom_point() +
scale_fill_manual(drop=FALSE,labels = c("A/J", "C57BL/6J", "129S1/SvImJ", "NOD/ShiLtJ", "NZO/HlLtJ", "CAST/EiJ", "PWK/PhJ", "WSB/EiJ"),
values=as.vector(qtl2::CCcolors)) +
scale_x_discrete(drop=FALSE,labels=c("A" = "A/J",
"B" = "C57BL/6J",
"C" = "129S1/SvImJ",
"D" = "NOD/ShiLtJ",
"E" = "NZO/HlLtJ",
"F" = "CAST/EiJ",
"G" = "PWK/PhJ",
"H" = "WSB/EiJ")) +
xlab(paste0("marker:", marker, " chr", chr, ":", peak_Mbp, "Mbp")) +
theme(axis.text.x = element_text(angle = -45, hjust = 0.1, vjust = 0.1),
text = element_text(size=14))
print(p1[[i]])
}
Warning: Removed 198 rows containing non-finite values (stat_ydensity).
Warning: Removed 198 rows containing missing values (geom_point).
Warning: Removed 121 rows containing non-finite values (stat_ydensity).
Warning: Removed 121 rows containing missing values (geom_point).
Warning: Removed 26 rows containing non-finite values (stat_ydensity).
Warning: Removed 26 rows containing missing values (geom_point).
dev.off()
png
2
save(first_batch_var,
first_batch_peak_var,
g,
px,
peaks,
p1,
file = "output/first_batch_variation.RData")
for(i in pheno.name){
print(p1[[i]])
}
Warning: Removed 198 rows containing non-finite values (stat_ydensity).
Warning: Removed 198 rows containing missing values (geom_point).
Warning: Removed 121 rows containing non-finite values (stat_ydensity).
Warning: Removed 121 rows containing missing values (geom_point).
Warning: Removed 26 rows containing non-finite values (stat_ydensity).
Warning: Removed 26 rows containing missing values (geom_point).
###second batch
# Read phenotype data -----------------------------------------------------
second_set <- read.xlsx(xlsxFile = "data/MasterMorphine Second Set DO w DOB2.xlsx",
sheet = 1, detectDates = TRUE)
second_set <- second_set[,-11]
colnames(second_set)[2] <- "Sex"
colnames(second_set)[6] <- "Status24"
second_set$Date <- as.character(second_set$Date)
second_set$DOB <- as.character(second_set$DOB)
second_set$DOT <- as.character(second_set$DOT)
second_set[is.na(second_set$DOT),"DOT"] <- second_set[is.na(second_set$DOT),"Date"]
second_set$age <- as.Date(second_set$DOT) - as.Date(second_set$DOB)
#character
second_set[,c("ID", "Sex", "GROUP", "Status24")] <- lapply(second_set[, c("ID", "Sex", "GROUP", "Status24")], as.character)
second_set$Status_bin <- ifelse(second_set$Status24 == "ALIVE", 1, 0)
second_set <- second_set[-205,] #remove one duplicated "18189"
rownames(second_set) <- second_set$ID
#remove outlier
second_set <- second_set[second_set$ID != "empty",]
#remove negative survival time subjects
second_set <- second_set[!(!is.na(second_set$Survival.Time) & second_set$Survival.Time < 0),]
second_set$Survival.Time[!is.na(second_set$Survival.Time) & second_set$Survival.Time > 15] <- NA
second_set$Recovery.Time[!is.na(second_set$Recovery.Time) & second_set$Recovery.Time > 24] <- NA
second_set$Min.depression[!is.na(second_set$Min.depression) & second_set$Min.depression > 1] <- NA
#load json object
load("/projects/csna/csna_workflow/data/Jackson_Lab_11_batches/gm_DO2816_qc.RData")
#replace id names
old_ids <- paste0(as.character(do.call(rbind.data.frame, strsplit(ind_ids(gm_DO2816_qc), "_"))[,6]))
old_ids <- make.unique(as.character(old_ids), sep = "_")
new_ids <- setNames(old_ids,
ind_ids(gm_DO2816_qc))
second_set_gm <- replace_ids(gm_DO2816_qc, new_ids)[intersect(second_set$ID,old_ids), ]
#covar
second_set <- second_set[intersect(second_set$ID,old_ids), ]
second_set <- second_set[ind_ids(second_set_gm), ]
rownames(second_set) <- second_set$ID
all.equal(ind_ids(second_set_gm), second_set$ID)
[1] TRUE
second_set$Sex <- as.factor(second_set$Sex)
second_set$DOT <- as.factor(second_set$DOT)
second_set$DOB <- as.factor(second_set$DOB)
#addcovar
options(na.action='na.pass')
addcovar = model.matrix(~Sex + weight + age + DOT, data = second_set)[,-1]
colnames(addcovar)[1] <- "Sex"
pheno.name <- c("Survival.Time", "Recovery.Time", "Min.depression")
#variation by covariates
second_batch_var <- list()
for(i in pheno.name){
linearMod <- lm(second_set[,i] ~ Sex + weight + age + DOT, data=second_set, na.action = na.omit) # build linear regression model on full data
#print(linearMod)
second_batch_var[[i]] <- summary(linearMod)$r.squared
}
#find peaks for every trait
load("output/qtl.morphine.out.second_set.weight_age.RData")
aprobs <- readRDS("output/second_set_gm.probs_8state.rds")
g <- px <- second_batch_peak_var <- peaks <- p2 <- list()
pdf("output/DO_morphine_second_batch_peak_violin.pdf")
for(i in pheno.name){
peaks[[i]] <- qtl.morphine.peaks[[i]][which.max(qtl.morphine.peaks[[i]]$lod),]
marker <- find_marker(second_set_gm$pmap, peaks[[i]]$chr, pos=peaks[[i]]$pos)
chr = peaks[[i]]$chr
peak_Mbp <- second_set_gm$pmap[[chr]][marker]
g[[i]] <- maxmarg(aprobs, second_set_gm$gmap, minprob = 0.4, chr=chr, pos=peaks[[i]]$pos, return_char = TRUE)
g[[i]] <- g[[i]][rownames(second_set)]
stopifnot(all.equal(names(g[[i]]), rownames(second_set)))
#variation
marker_apr <- pull_genoprobpos(aprobs, marker=marker)
linearMod <- lm(second_set[,i] ~ Sex + weight + age + DOT + marker_apr, data=second_set, na.action = na.omit) # build linear regression model on full data
#print(linearMod)
second_batch_peak_var[[i]] <- summary(linearMod)$r.squared
px[[i]] <- cbind(g[[i]], second_set)
colnames(px[[i]])[1] <- "Strain"
#px[[i]] <- px[!is.na(px$Strain),]
#plot violin
p2[[i]] <- ggplot(data = px[[i]][!is.na(px[[i]]$Strain),], aes_string(x="Strain", y=i, group="Strain", fill="Strain")) +
geom_violin() +
geom_point() +
scale_fill_manual(drop=FALSE,labels = c("A/J", "C57BL/6J", "129S1/SvImJ", "NOD/ShiLtJ", "NZO/HlLtJ", "CAST/EiJ", "PWK/PhJ", "WSB/EiJ"),
values=as.vector(qtl2::CCcolors)) +
scale_x_discrete(drop=FALSE,labels=c("A" = "A/J",
"B" = "C57BL/6J",
"C" = "129S1/SvImJ",
"D" = "NOD/ShiLtJ",
"E" = "NZO/HlLtJ",
"F" = "CAST/EiJ",
"G" = "PWK/PhJ",
"H" = "WSB/EiJ")) +
xlab(paste0("second batch marker:", marker, " chr", chr, ":", peak_Mbp, "Mbp")) +
theme(axis.text.x = element_text(angle = -45, hjust = 0.1, vjust = 0.1),
text = element_text(size=14))
print(p2[[i]])
}
Warning: Removed 191 rows containing non-finite values (stat_ydensity).
Warning: Removed 191 rows containing missing values (geom_point).
Warning: Removed 149 rows containing non-finite values (stat_ydensity).
Warning: Removed 149 rows containing missing values (geom_point).
Warning: Removed 16 rows containing non-finite values (stat_ydensity).
Warning: Removed 16 rows containing missing values (geom_point).
dev.off()
png
2
save(second_batch_var,
second_batch_peak_var,
g,
px,
peaks,
p2,
file = "output/second_batch_variation.RData")
for(i in pheno.name){
print(p2[[i]])
}
Warning: Removed 191 rows containing non-finite values (stat_ydensity).
Warning: Removed 191 rows containing missing values (geom_point).
Warning: Removed 149 rows containing non-finite values (stat_ydensity).
Warning: Removed 149 rows containing missing values (geom_point).
Warning: Removed 16 rows containing non-finite values (stat_ydensity).
Warning: Removed 16 rows containing missing values (geom_point).
###first batch peak marker in second batch
#load first batch
load("output/first_batch_variation.RData")
pp <- peaks
g <- px <- second_batch_peak_var <- p3 <-list()
pdf("output/DO_morphine_first_batch_peak_in_second_batch_violin.pdf")
for(i in pheno.name){
peaks <- pp[[i]]
marker <- find_marker(second_set_gm$pmap, peaks$chr, pos=peaks$pos)
chr = peaks$chr
peak_Mbp <- second_set_gm$pmap[[chr]][marker]
g[[i]] <- maxmarg(aprobs, second_set_gm$gmap, minprob = 0.4, chr=chr, pos=peaks$pos, return_char = TRUE)
g[[i]] <- g[[i]][rownames(second_set)]
stopifnot(all.equal(names(g[[i]]), rownames(second_set)))
#variation
marker_apr <- pull_genoprobpos(aprobs, marker=marker)
linearMod <- lm(second_set[,i] ~ Sex + weight + age + DOT + marker_apr, data=second_set, na.action = na.omit) # build linear regression model on full data
#print(linearMod)
second_batch_peak_var[[i]] <- summary(linearMod)$r.squared
px[[i]] <- cbind(g[[i]], second_set)
colnames(px[[i]])[1] <- "Strain"
#px[[i]] <- px[!is.na(px$Strain),]
#plot violin
p3[[i]] <- ggplot(data = px[[i]][!is.na(px[[i]]$Strain),], aes_string(x="Strain", y=i, group="Strain", fill="Strain")) +
geom_violin() +
geom_point() +
scale_fill_manual(drop=FALSE,labels = c("A/J", "C57BL/6J", "129S1/SvImJ", "NOD/ShiLtJ", "NZO/HlLtJ", "CAST/EiJ", "PWK/PhJ", "WSB/EiJ"),
values=as.vector(qtl2::CCcolors)) +
scale_x_discrete(drop=FALSE,labels=c("A" = "A/J",
"B" = "C57BL/6J",
"C" = "129S1/SvImJ",
"D" = "NOD/ShiLtJ",
"E" = "NZO/HlLtJ",
"F" = "CAST/EiJ",
"G" = "PWK/PhJ",
"H" = "WSB/EiJ")) +
xlab(paste0("first batch marker in second batch:", marker, " chr", chr, ":", peak_Mbp, "Mbp")) +
theme(axis.text.x = element_text(angle = -45, hjust = 0.1, vjust = 0.1),
text = element_text(size=14))
print(p3[[i]])
}
Warning: Removed 191 rows containing non-finite values (stat_ydensity).
Warning: Removed 191 rows containing missing values (geom_point).
Warning: Removed 151 rows containing non-finite values (stat_ydensity).
Warning: Removed 151 rows containing missing values (geom_point).
Warning: Removed 16 rows containing non-finite values (stat_ydensity).
Warning: Removed 16 rows containing missing values (geom_point).
dev.off()
png
2
pdf("output/DO_morphine_first_batch_peak_in_second_batch_violin_sidebyside.pdf", width = 20)
grid.arrange(p1$Survival.Time, p3$Survival.Time, ncol=2)
Warning: Removed 198 rows containing non-finite values (stat_ydensity).
Warning: Removed 198 rows containing missing values (geom_point).
Warning: Removed 191 rows containing non-finite values (stat_ydensity).
Warning: Removed 191 rows containing missing values (geom_point).
grid.arrange(p1$Recovery.Time, p3$Recovery.Time, ncol=2)
Warning: Removed 121 rows containing non-finite values (stat_ydensity).
Warning: Removed 121 rows containing missing values (geom_point).
Warning: Removed 151 rows containing non-finite values (stat_ydensity).
Warning: Removed 151 rows containing missing values (geom_point).
grid.arrange(p1$Min.depression, p3$Min.depression, ncol=2)
Warning: Removed 26 rows containing non-finite values (stat_ydensity).
Warning: Removed 26 rows containing missing values (geom_point).
Warning: Removed 16 rows containing non-finite values (stat_ydensity).
Warning: Removed 16 rows containing missing values (geom_point).
dev.off()
png
2
grid.arrange(p1$Survival.Time, p3$Survival.Time, ncol=2)
Warning: Removed 198 rows containing non-finite values (stat_ydensity).
Warning: Removed 198 rows containing missing values (geom_point).
Warning: Removed 191 rows containing non-finite values (stat_ydensity).
Warning: Removed 191 rows containing missing values (geom_point).
grid.arrange(p1$Recovery.Time, p3$Recovery.Time, ncol=2)
Warning: Removed 121 rows containing non-finite values (stat_ydensity).
Warning: Removed 121 rows containing missing values (geom_point).
Warning: Removed 151 rows containing non-finite values (stat_ydensity).
Warning: Removed 151 rows containing missing values (geom_point).
grid.arrange(p1$Min.depression, p3$Min.depression, ncol=2)
Warning: Removed 26 rows containing non-finite values (stat_ydensity).
Warning: Removed 26 rows containing missing values (geom_point).
Warning: Removed 16 rows containing non-finite values (stat_ydensity).
Warning: Removed 16 rows containing missing values (geom_point).
###second batch peak marker in first batch
#load second batch
load("output/second_batch_variation.RData")
aprobs <- readRDS("output/do.morphine.probs_8state.rds")
pp <- peaks
g <- px <- first_batch_peak_var <- p4 <-list()
pdf("output/DO_morphine_second_batch_peak_in_first_batch_violin.pdf")
for(i in pheno.name){
peaks <- pp[[i]]
marker <- find_marker(pmap, peaks$chr, pos=peaks$pos)
chr = peaks$chr
peak_Mbp <- pmap[[chr]][marker]
g[[i]] <- maxmarg(aprobs, do.morphine$gmap, minprob = 0.4, chr=chr, pos=peaks$pos, return_char = TRUE)
g[[i]] <- g[[i]][rownames(morphine.pheno)]
stopifnot(all.equal(names(g[[i]]), rownames(morphine.pheno)))
#variation
marker_apr <- pull_genoprobpos(aprobs, marker=marker)
px[[i]] <- cbind(g[[i]], morphine.pheno)
colnames(px[[i]])[1] <- "Strain"
#px[[i]] <- px[[i]][!is.na(px[[i]]$Strain),]
px[[i]]$Strain <- factor(px[[i]]$Strain, levels = LETTERS[1:8])
#plot violin
p4[[i]] <- ggplot(data = px[[i]][!is.na(px[[i]]$Strain),], aes_string(x="Strain", y=i, group="Strain", fill="Strain")) +
geom_violin() +
geom_point() +
scale_fill_manual(drop = FALSE, labels = c("A/J", "C57BL/6J", "129S1/SvImJ", "NOD/ShiLtJ", "NZO/HlLtJ", "CAST/EiJ", "PWK/PhJ", "WSB/EiJ"),
values=as.vector(qtl2::CCcolors)) +
scale_x_discrete(drop=FALSE,labels=c("A" = "A/J",
"B" = "C57BL/6J",
"C" = "129S1/SvImJ",
"D" = "NOD/ShiLtJ",
"E" = "NZO/HlLtJ",
"F" = "CAST/EiJ",
"G" = "PWK/PhJ",
"H" = "WSB/EiJ")) +
xlab(paste0("second batch marker in the first batch:", marker, " chr", chr, ":", peak_Mbp, "Mbp")) +
theme(axis.text.x = element_text(angle = -45, hjust = 0.1, vjust = 0.1),
text = element_text(size=14))
print(p4[[i]])
}
Warning: Removed 198 rows containing non-finite values (stat_ydensity).
Warning: Removed 198 rows containing missing values (geom_point).
Warning: Removed 121 rows containing non-finite values (stat_ydensity).
Warning: Removed 121 rows containing missing values (geom_point).
Warning: Removed 27 rows containing non-finite values (stat_ydensity).
Warning: Removed 27 rows containing missing values (geom_point).
dev.off()
png
2
pdf("output/DO_morphine_second_batch_peak_in_first_batch_violin_sidebyside.pdf", width = 20)
grid.arrange(p2$Survival.Time, p4$Survival.Time, ncol=2)
Warning: Removed 191 rows containing non-finite values (stat_ydensity).
Warning: Removed 191 rows containing missing values (geom_point).
Warning: Removed 198 rows containing non-finite values (stat_ydensity).
Warning: Removed 198 rows containing missing values (geom_point).
grid.arrange(p2$Recovery.Time, p4$Recovery.Time, ncol=2)
Warning: Removed 149 rows containing non-finite values (stat_ydensity).
Warning: Removed 149 rows containing missing values (geom_point).
Warning: Removed 121 rows containing non-finite values (stat_ydensity).
Warning: Removed 121 rows containing missing values (geom_point).
grid.arrange(p2$Min.depression, p4$Min.depression, ncol=2)
Warning: Removed 16 rows containing non-finite values (stat_ydensity).
Warning: Removed 16 rows containing missing values (geom_point).
Warning: Removed 27 rows containing non-finite values (stat_ydensity).
Warning: Removed 27 rows containing missing values (geom_point).
dev.off()
png
2
grid.arrange(p2$Survival.Time, p4$Survival.Time, ncol=2)
Warning: Removed 191 rows containing non-finite values (stat_ydensity).
Warning: Removed 191 rows containing missing values (geom_point).
Warning: Removed 198 rows containing non-finite values (stat_ydensity).
Warning: Removed 198 rows containing missing values (geom_point).
grid.arrange(p2$Recovery.Time, p4$Recovery.Time, ncol=2)
Warning: Removed 149 rows containing non-finite values (stat_ydensity).
Warning: Removed 149 rows containing missing values (geom_point).
Warning: Removed 121 rows containing non-finite values (stat_ydensity).
Warning: Removed 121 rows containing missing values (geom_point).
grid.arrange(p2$Min.depression, p4$Min.depression, ncol=2)
Warning: Removed 16 rows containing non-finite values (stat_ydensity).
Warning: Removed 16 rows containing missing values (geom_point).
Warning: Removed 27 rows containing non-finite values (stat_ydensity).
Warning: Removed 27 rows containing missing values (geom_point).
sessionInfo()
R version 4.0.0 (2020-04-24)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.4 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.2.20.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] openxlsx_4.2.2 qtl2_0.22-8 gridExtra_2.3 ggplot2_3.3.2
[5] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] zip_2.1.1 Rcpp_1.0.4.6 compiler_4.0.0 pillar_1.4.4
[5] later_1.0.0 git2r_0.27.1 tools_4.0.0 bit_1.1-15.2
[9] digest_0.6.25 jsonlite_1.6.1 memoise_1.1.0 RSQLite_2.2.0
[13] evaluate_0.14 lifecycle_0.2.0 tibble_3.0.1 gtable_0.3.0
[17] pkgconfig_2.0.3 rlang_0.4.6 DBI_1.1.0 parallel_4.0.0
[21] yaml_2.2.1 xfun_0.13 withr_2.2.0 stringr_1.4.0
[25] dplyr_1.0.0 knitr_1.28 generics_0.0.2 fs_1.4.1
[29] vctrs_0.3.1 bit64_0.9-7 rprojroot_1.3-2 grid_4.0.0
[33] tidyselect_1.1.0 data.table_1.12.8 glue_1.4.0 R6_2.4.1
[37] rmarkdown_2.3 farver_2.0.3 blob_1.2.1 purrr_0.3.4
[41] magrittr_1.5 whisker_0.4 backports_1.1.6 scales_1.1.1
[45] promises_1.1.0 htmltools_0.4.0 ellipsis_0.3.0 colorspace_1.4-1
[49] httpuv_1.5.4 labeling_0.3 stringi_1.4.6 munsell_0.5.0
[53] crayon_1.3.4
This R Markdown site was created with workflowr