Last updated: 2021-09-06
Checks: 7 0
Knit directory: DO_Opioid/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200504)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 95af54d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .RData
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/Picture1.png
Untracked files:
Untracked: analysis/DDO_morphine1_second_set_69k.stdout
Untracked: analysis/DO_Fentanyl.R
Untracked: analysis/DO_Fentanyl.err
Untracked: analysis/DO_Fentanyl.out
Untracked: analysis/DO_Fentanyl.sh
Untracked: analysis/DO_morphine1.R
Untracked: analysis/DO_morphine1.Rout
Untracked: analysis/DO_morphine1.sh
Untracked: analysis/DO_morphine1.stderr
Untracked: analysis/DO_morphine1.stdout
Untracked: analysis/DO_morphine1_SNP.R
Untracked: analysis/DO_morphine1_SNP.Rout
Untracked: analysis/DO_morphine1_SNP.sh
Untracked: analysis/DO_morphine1_SNP.stderr
Untracked: analysis/DO_morphine1_SNP.stdout
Untracked: analysis/DO_morphine1_combined.R
Untracked: analysis/DO_morphine1_combined.Rout
Untracked: analysis/DO_morphine1_combined.sh
Untracked: analysis/DO_morphine1_combined.stderr
Untracked: analysis/DO_morphine1_combined.stdout
Untracked: analysis/DO_morphine1_combined_69k.R
Untracked: analysis/DO_morphine1_combined_69k.Rout
Untracked: analysis/DO_morphine1_combined_69k.sh
Untracked: analysis/DO_morphine1_combined_69k.stderr
Untracked: analysis/DO_morphine1_combined_69k.stdout
Untracked: analysis/DO_morphine1_combined_69k_m2.R
Untracked: analysis/DO_morphine1_combined_69k_m2.Rout
Untracked: analysis/DO_morphine1_combined_69k_m2.sh
Untracked: analysis/DO_morphine1_combined_69k_m2.stderr
Untracked: analysis/DO_morphine1_combined_69k_m2.stdout
Untracked: analysis/DO_morphine1_combined_weight_DOB.R
Untracked: analysis/DO_morphine1_combined_weight_DOB.Rout
Untracked: analysis/DO_morphine1_combined_weight_DOB.err
Untracked: analysis/DO_morphine1_combined_weight_DOB.out
Untracked: analysis/DO_morphine1_combined_weight_DOB.sh
Untracked: analysis/DO_morphine1_combined_weight_DOB.stderr
Untracked: analysis/DO_morphine1_combined_weight_DOB.stdout
Untracked: analysis/DO_morphine1_combined_weight_age.R
Untracked: analysis/DO_morphine1_combined_weight_age.err
Untracked: analysis/DO_morphine1_combined_weight_age.out
Untracked: analysis/DO_morphine1_combined_weight_age.sh
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT.R
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT.err
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT.out
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT.sh
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT_chr19.R
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT_chr19.err
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT_chr19.out
Untracked: analysis/DO_morphine1_combined_weight_age_GAMMT_chr19.sh
Untracked: analysis/DO_morphine1_cph.R
Untracked: analysis/DO_morphine1_cph.Rout
Untracked: analysis/DO_morphine1_cph.sh
Untracked: analysis/DO_morphine1_second_set.R
Untracked: analysis/DO_morphine1_second_set.Rout
Untracked: analysis/DO_morphine1_second_set.sh
Untracked: analysis/DO_morphine1_second_set.stderr
Untracked: analysis/DO_morphine1_second_set.stdout
Untracked: analysis/DO_morphine1_second_set_69k.R
Untracked: analysis/DO_morphine1_second_set_69k.Rout
Untracked: analysis/DO_morphine1_second_set_69k.sh
Untracked: analysis/DO_morphine1_second_set_69k.stderr
Untracked: analysis/DO_morphine1_second_set_SNP.R
Untracked: analysis/DO_morphine1_second_set_SNP.Rout
Untracked: analysis/DO_morphine1_second_set_SNP.sh
Untracked: analysis/DO_morphine1_second_set_SNP.stderr
Untracked: analysis/DO_morphine1_second_set_SNP.stdout
Untracked: analysis/DO_morphine1_second_set_weight_DOB.R
Untracked: analysis/DO_morphine1_second_set_weight_DOB.Rout
Untracked: analysis/DO_morphine1_second_set_weight_DOB.err
Untracked: analysis/DO_morphine1_second_set_weight_DOB.out
Untracked: analysis/DO_morphine1_second_set_weight_DOB.sh
Untracked: analysis/DO_morphine1_second_set_weight_DOB.stderr
Untracked: analysis/DO_morphine1_second_set_weight_DOB.stdout
Untracked: analysis/DO_morphine1_second_set_weight_age.R
Untracked: analysis/DO_morphine1_second_set_weight_age.Rout
Untracked: analysis/DO_morphine1_second_set_weight_age.err
Untracked: analysis/DO_morphine1_second_set_weight_age.out
Untracked: analysis/DO_morphine1_second_set_weight_age.sh
Untracked: analysis/DO_morphine1_second_set_weight_age.stderr
Untracked: analysis/DO_morphine1_second_set_weight_age.stdout
Untracked: analysis/DO_morphine1_weight_DOB.R
Untracked: analysis/DO_morphine1_weight_DOB.sh
Untracked: analysis/DO_morphine1_weight_age.R
Untracked: analysis/DO_morphine1_weight_age.sh
Untracked: analysis/DO_morphine_gemma.R
Untracked: analysis/DO_morphine_gemma.err
Untracked: analysis/DO_morphine_gemma.out
Untracked: analysis/DO_morphine_gemma.sh
Untracked: analysis/DO_morphine_gemma_firstmin.R
Untracked: analysis/DO_morphine_gemma_firstmin.err
Untracked: analysis/DO_morphine_gemma_firstmin.out
Untracked: analysis/DO_morphine_gemma_firstmin.sh
Untracked: analysis/DO_morphine_gemma_withpermu.R
Untracked: analysis/DO_morphine_gemma_withpermu.err
Untracked: analysis/DO_morphine_gemma_withpermu.out
Untracked: analysis/DO_morphine_gemma_withpermu.sh
Untracked: analysis/DO_morphine_gemma_withpermu_firstbatch_min.depression.R
Untracked: analysis/DO_morphine_gemma_withpermu_firstbatch_min.depression.err
Untracked: analysis/DO_morphine_gemma_withpermu_firstbatch_min.depression.out
Untracked: analysis/DO_morphine_gemma_withpermu_firstbatch_min.depression.sh
Untracked: analysis/Plot_DO_morphine1_SNP.R
Untracked: analysis/Plot_DO_morphine1_SNP.Rout
Untracked: analysis/Plot_DO_morphine1_SNP.sh
Untracked: analysis/Plot_DO_morphine1_SNP.stderr
Untracked: analysis/Plot_DO_morphine1_SNP.stdout
Untracked: analysis/Plot_DO_morphine1_second_set_SNP.R
Untracked: analysis/Plot_DO_morphine1_second_set_SNP.Rout
Untracked: analysis/Plot_DO_morphine1_second_set_SNP.sh
Untracked: analysis/Plot_DO_morphine1_second_set_SNP.stderr
Untracked: analysis/Plot_DO_morphine1_second_set_SNP.stdout
Untracked: analysis/scripts/
Untracked: analysis/workflow_proc.R
Untracked: analysis/workflow_proc.sh
Untracked: analysis/workflow_proc.stderr
Untracked: analysis/workflow_proc.stdout
Untracked: analysis/x.R
Untracked: code/cfw/
Untracked: code/gemma_plot.R
Untracked: code/reconst_utils.R
Untracked: data/69k_grid_pgmap.RData
Untracked: data/FinalReport/
Untracked: data/GM/
Untracked: data/GM_covar.csv
Untracked: data/GM_covar_07092018_morphine.csv
Untracked: data/Jackson_Lab_Bubier_MURGIGV01/
Untracked: data/Master Fentanyl DO Study Sheet.xlsx
Untracked: data/MasterMorphine Second Set DO w DOB2.xlsx
Untracked: data/MasterMorphine Second Set DO.xlsx
Untracked: data/cc_variants.sqlite
Untracked: data/combined/
Untracked: data/first/
Untracked: data/founder_geno.csv
Untracked: data/genetic_map.csv
Untracked: data/gm.json
Untracked: data/gwas.sh
Untracked: data/marker_grid_0.02cM_plus.txt
Untracked: data/mouse_genes_mgi.sqlite
Untracked: data/pheno.csv
Untracked: data/pheno_qtl2.csv
Untracked: data/pheno_qtl2_07092018_morphine.csv
Untracked: data/pheno_qtl2_w_dob.csv
Untracked: data/physical_map.csv
Untracked: data/rnaseq/
Untracked: data/sample_geno.csv
Untracked: data/second/
Untracked: figure/
Untracked: glimma-plots/
Untracked: output/DO_morphine_Min.depression.png
Untracked: output/DO_morphine_Min.depression22222_violin_chr5.pdf
Untracked: output/DO_morphine_Min.depression_coefplot.pdf
Untracked: output/DO_morphine_Min.depression_coefplot_blup.pdf
Untracked: output/DO_morphine_Min.depression_coefplot_blup_chr5.png
Untracked: output/DO_morphine_Min.depression_coefplot_blup_chrX.png
Untracked: output/DO_morphine_Min.depression_coefplot_chr5.png
Untracked: output/DO_morphine_Min.depression_coefplot_chrX.png
Untracked: output/DO_morphine_Min.depression_peak_genes_chr5.png
Untracked: output/DO_morphine_Min.depression_violin_chr5.png
Untracked: output/DO_morphine_Recovery.Time.png
Untracked: output/DO_morphine_Recovery.Time_coefplot.pdf
Untracked: output/DO_morphine_Recovery.Time_coefplot_blup.pdf
Untracked: output/DO_morphine_Recovery.Time_coefplot_blup_chr11.png
Untracked: output/DO_morphine_Recovery.Time_coefplot_blup_chr4.png
Untracked: output/DO_morphine_Recovery.Time_coefplot_blup_chr7.png
Untracked: output/DO_morphine_Recovery.Time_coefplot_blup_chr9.png
Untracked: output/DO_morphine_Recovery.Time_coefplot_chr11.png
Untracked: output/DO_morphine_Recovery.Time_coefplot_chr4.png
Untracked: output/DO_morphine_Recovery.Time_coefplot_chr7.png
Untracked: output/DO_morphine_Recovery.Time_coefplot_chr9.png
Untracked: output/DO_morphine_Status_bin.png
Untracked: output/DO_morphine_Status_bin_coefplot.pdf
Untracked: output/DO_morphine_Status_bin_coefplot_blup.pdf
Untracked: output/DO_morphine_Survival.Time.png
Untracked: output/DO_morphine_Survival.Time_coefplot.pdf
Untracked: output/DO_morphine_Survival.Time_coefplot_blup.pdf
Untracked: output/DO_morphine_Survival.Time_coefplot_blup_chr17.png
Untracked: output/DO_morphine_Survival.Time_coefplot_blup_chr8.png
Untracked: output/DO_morphine_Survival.Time_coefplot_chr17.png
Untracked: output/DO_morphine_Survival.Time_coefplot_chr8.png
Untracked: output/DO_morphine_combine_batch_peak_violin.pdf
Untracked: output/DO_morphine_combined_69k_m2_Min.depression.png
Untracked: output/DO_morphine_combined_69k_m2_Min.depression_coefplot.pdf
Untracked: output/DO_morphine_combined_69k_m2_Min.depression_coefplot_blup.pdf
Untracked: output/DO_morphine_combined_69k_m2_Recovery.Time.png
Untracked: output/DO_morphine_combined_69k_m2_Recovery.Time_coefplot.pdf
Untracked: output/DO_morphine_combined_69k_m2_Recovery.Time_coefplot_blup.pdf
Untracked: output/DO_morphine_combined_69k_m2_Status_bin.png
Untracked: output/DO_morphine_combined_69k_m2_Status_bin_coefplot.pdf
Untracked: output/DO_morphine_combined_69k_m2_Status_bin_coefplot_blup.pdf
Untracked: output/DO_morphine_combined_69k_m2_Survival.Time.png
Untracked: output/DO_morphine_combined_69k_m2_Survival.Time_coefplot.pdf
Untracked: output/DO_morphine_combined_69k_m2_Survival.Time_coefplot_blup.pdf
Untracked: output/DO_morphine_coxph_24hrs_kinship_QTL.png
Untracked: output/DO_morphine_cphout.RData
Untracked: output/DO_morphine_first_batch_peak_in_second_batch_violin.pdf
Untracked: output/DO_morphine_first_batch_peak_in_second_batch_violin_sidebyside.pdf
Untracked: output/DO_morphine_first_batch_peak_violin.pdf
Untracked: output/DO_morphine_operm.cph.RData
Untracked: output/DO_morphine_second_batch_on_first_batch_peak_violin.pdf
Untracked: output/DO_morphine_second_batch_peak_ch6surv_on_first_batchviolin.pdf
Untracked: output/DO_morphine_second_batch_peak_ch6surv_on_first_batchviolin2.pdf
Untracked: output/DO_morphine_second_batch_peak_in_first_batch_violin.pdf
Untracked: output/DO_morphine_second_batch_peak_in_first_batch_violin_sidebyside.pdf
Untracked: output/DO_morphine_second_batch_peak_violin.pdf
Untracked: output/DO_morphine_secondbatch_69k_Min.depression.png
Untracked: output/DO_morphine_secondbatch_69k_Min.depression_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_69k_Min.depression_coefplot_blup.pdf
Untracked: output/DO_morphine_secondbatch_69k_Recovery.Time.png
Untracked: output/DO_morphine_secondbatch_69k_Recovery.Time_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_69k_Recovery.Time_coefplot_blup.pdf
Untracked: output/DO_morphine_secondbatch_69k_Status_bin.png
Untracked: output/DO_morphine_secondbatch_69k_Status_bin_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_69k_Status_bin_coefplot_blup.pdf
Untracked: output/DO_morphine_secondbatch_69k_Survival.Time.png
Untracked: output/DO_morphine_secondbatch_69k_Survival.Time_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_69k_Survival.Time_coefplot_blup.pdf
Untracked: output/DO_morphine_secondbatch_Min.depression.png
Untracked: output/DO_morphine_secondbatch_Min.depression_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_Min.depression_coefplot_blup.pdf
Untracked: output/DO_morphine_secondbatch_Recovery.Time.png
Untracked: output/DO_morphine_secondbatch_Recovery.Time_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_Recovery.Time_coefplot_blup.pdf
Untracked: output/DO_morphine_secondbatch_Status_bin.png
Untracked: output/DO_morphine_secondbatch_Status_bin_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_Status_bin_coefplot_blup.pdf
Untracked: output/DO_morphine_secondbatch_Survival.Time.png
Untracked: output/DO_morphine_secondbatch_Survival.Time_coefplot.pdf
Untracked: output/DO_morphine_secondbatch_Survival.Time_coefplot_blup.pdf
Untracked: output/Fentanyl/
Untracked: output/apr_69kchr_combined.RData
Untracked: output/apr_69kchr_k_loco_combined.rds
Untracked: output/apr_69kchr_second_set.RData
Untracked: output/combine_batch_variation.RData
Untracked: output/combined_gm.RData
Untracked: output/combined_gm.k_loco.rds
Untracked: output/combined_gm.k_overall.rds
Untracked: output/combined_gm.probs_8state.rds
Untracked: output/coxph/
Untracked: output/do.morphine.RData
Untracked: output/do.morphine.k_loco.rds
Untracked: output/do.morphine.probs_8state.rds
Untracked: output/first_batch_variation.RData
Untracked: output/old_temp/
Untracked: output/pr_69kchr_combined.RData
Untracked: output/pr_69kchr_second_set.RData
Untracked: output/qtl.morphine.69k.out.combined.RData
Untracked: output/qtl.morphine.69k.out.combined_m2.RData
Untracked: output/qtl.morphine.69k.out.second_set.RData
Untracked: output/qtl.morphine.operm.RData
Untracked: output/qtl.morphine.out.RData
Untracked: output/qtl.morphine.out.combined_gm.RData
Untracked: output/qtl.morphine.out.combined_weight_DOB.RData
Untracked: output/qtl.morphine.out.combined_weight_age.RData
Untracked: output/qtl.morphine.out.second_set.RData
Untracked: output/qtl.morphine.out.second_set.weight_DOB.RData
Untracked: output/qtl.morphine.out.second_set.weight_age.RData
Untracked: output/qtl.morphine.out.weight_DOB.RData
Untracked: output/qtl.morphine.out.weight_age.RData
Untracked: output/qtl.morphine1.snpout.RData
Untracked: output/qtl.morphine2.snpout.RData
Untracked: output/second_batch_variation.RData
Untracked: output/second_set_apr_69kchr_k_loco.rds
Untracked: output/second_set_gm.RData
Untracked: output/second_set_gm.k_loco.rds
Untracked: output/second_set_gm.probs_8state.rds
Untracked: output/topSNP_chr5_mindepression.csv
Untracked: output/zoompeak_Min.depression_9.pdf
Untracked: output/zoompeak_Recovery.Time_16.pdf
Untracked: output/zoompeak_Status_bin_11.pdf
Untracked: output/zoompeak_Survival.Time_1.pdf
Unstaged changes:
Modified: _workflowr.yml
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/batches_3_do_diversity_report.Rmd
) and HTML (docs/batches_3_do_diversity_report.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 95af54d | xhyuo | 2021-09-06 | fentanyl |
html | 468ae22 | xhyuo | 2021-06-24 | Build site. |
Rmd | cd89ecf | xhyuo | 2021-06-24 | 3batches diversity |
After finishing 06_final_pr_apr_69K.R, 07_do_diversity_report.R, all the output will be used plot DO Diversity Report for 3 batches of DO mice
# Load packages
library(qtl2)
library(table1)
library(tidyverse)
library(data.table)
library(foreach)
library(doParallel)
library(parallel)
library(abind)
library(gap)
library(regress)
library(lme4)
library(abind)
library(ggplot2)
library(vcd)
library(MASS)
#library(plotly)
library(colorspace)
library(HardyWeinberg)
options(stringsAsFactors = FALSE)
source("code/reconst_utils.R")
load("data/Jackson_Lab_Bubier_MURGIGV01/gm_DO395_qc_newid.RData")#gm_after_qc
# make dataset with a few variables to summarize
table1 <- gm_after_qc$covar %>%
dplyr::select(Name = name,
Sex = sex,
Generation = ngen) %>%
mutate(Sex = case_when(
Sex == "F" ~ "Female",
Sex == "M" ~ "Male"
))
# summarize the data
table1(~ Generation | Sex, data=table1)
Female (N=201) |
Male (N=194) |
Overall (N=395) |
|
---|---|---|---|
Generation | |||
36 | 201 (100%) | 194 (100%) | 395 (100%) |
load("data/Jackson_Lab_Bubier_MURGIGV01/fp_DO395.RData") #fp and fp_summary object
#summarize per generation per chromosome
fp_summary = fp %>% group_by(chr, founder, gen) %>%
summarize(mean = round(100*mean(prop), 2),
sd = round(100*sd(prop), 2))
`summarise()` has grouped output by 'chr', 'founder'. You can override using the `.groups` argument.
#Stackbar plot
#summarize per chromosome across generation
pdf(file = "data/Jackson_Lab_Bubier_MURGIGV01/stackbar_mean_prop_across_all_gen.pdf",width = 16)
p01 <- fp %>% group_by(chr, founder) %>%
summarise(grand_mean = round(100*mean(prop), 2)) %>%
ggplot(aes(x = chr, y = grand_mean, fill = founder)) +
geom_bar(stat="identity",
width=1) +
geom_text(aes(label = paste0(grand_mean)), position = position_stack(vjust = 0.5)) +
scale_fill_manual(values = CCcolors) +
ylab("Mean percentage across generations") +
xlab("Chromosome") +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
plot.title = element_text(hjust = 0.5),
text = element_text(size=16),
axis.title=element_text(size=16),
legend.title=element_blank())
`summarise()` has grouped output by 'chr'. You can override using the `.groups` argument.
p01
dev.off()
png
2
p01
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
#Stackbar plot
#summarize per chromosome across generation
pdf(file = "data/Jackson_Lab_Bubier_MURGIGV01/stackbar_mean_prop_across_all_chr.pdf",width = 16)
p02 <- fp %>% group_by(gen, founder) %>%
summarise(grand_mean = round(100*mean(prop), 2),
grand_sd = round(100*sd(prop), 2)) %>%
ggplot(aes(x = gen, y = grand_mean, fill = founder)) +
geom_bar(stat="identity",
width=0.99) +
geom_text(aes(label = paste0(grand_mean, " ± ", grand_sd)), position = position_stack(vjust = 0.5)) +
scale_fill_manual(values = CCcolors) +
ylab("Mean percentage across all chromosomes") +
xlab("Generation") +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
plot.title = element_text(hjust = 0.5),
text = element_text(size=16),
axis.title=element_text(size=16),
legend.title=element_blank())
`summarise()` has grouped output by 'gen'. You can override using the `.groups` argument.
p02
dev.off()
png
2
p02
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
#stackbar_prop_across_gen
for(c in c(1:19, "X")){
#print(c)
p <- ggplot(data = fp_summary[fp_summary$chr == c,], aes(x = gen, y = mean, fill = founder)) +
geom_bar(stat="identity",
width=1) +
geom_text(aes(label = paste0(mean," ± ", sd)), position = position_stack(vjust = 0.5)) +
scale_fill_manual(values = CCcolors) +
labs(title = paste0("Chr ", c)) +
ylab("Percentage") +
xlab("Generation") +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
plot.title = element_text(hjust = 0.5),
text = element_text(size=16),
axis.title=element_text(size=16),
legend.title=element_blank())
print(p)
}
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
pdf(file = "data/Jackson_Lab_Bubier_MURGIGV01/stackbar_prop_across_gen.pdf",width = 16)
for(c in c(1:19, "X")){
#print(c)
p <- ggplot(data = fp_summary[fp_summary$chr == c,], aes(x = gen, y = mean, fill = founder)) +
geom_bar(stat="identity",
width=1) +
geom_text(aes(label = paste0(mean," ± ", sd)), position = position_stack(vjust = 0.5)) +
scale_fill_manual(values = CCcolors) +
labs(title = paste0("Chr ", c)) +
ylab("Percentage") +
xlab("Generation") +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
plot.title = element_text(hjust = 0.5),
text = element_text(size=16),
axis.title=element_text(size=16),
legend.title=element_blank())
print(p)
}
dev.off()
png
2
#stackbar_prop_across_chr
for(g in levels(fp_summary$gen)){
#print(g)
p <- ggplot(data = fp_summary[fp_summary$gen == g,], aes(x = chr, y = mean, fill = founder)) +
geom_bar(stat="identity",
width=1) +
geom_text(aes(label = paste0(mean)), position = position_stack(vjust = 0.5)) +
scale_fill_manual(values = CCcolors) +
labs(title = paste0("Generation ", g)) +
ylab("Percentage") +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.title.x = element_blank(),
axis.line = element_line(colour = "black"),
plot.title = element_text(hjust = 0.5),
text = element_text(size=16),
axis.title=element_text(size=16),
legend.title=element_blank())
#print(p)
}
pdf(file = "data/Jackson_Lab_Bubier_MURGIGV01/stackbar_prop_across_chr.pdf", width = 12)
for(g in levels(fp_summary$gen)){
#print(g)
p <- ggplot(data = fp_summary[fp_summary$gen == g,], aes(x = chr, y = mean, fill = founder)) +
geom_bar(stat="identity",
width=1) +
geom_text(aes(label = paste0(mean)), position = position_stack(vjust = 0.5)) +
scale_fill_manual(values = CCcolors) +
labs(title = paste0("Generation ", g)) +
ylab("Percentage") +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.title.x = element_blank(),
axis.line = element_line(colour = "black"),
plot.title = element_text(hjust = 0.5),
text = element_text(size=16),
axis.title=element_text(size=16),
legend.title=element_blank())
print(p)
}
dev.off()
png
2
#line plot
#plt <- htmltools::tagList()
for(c in unique(names(gm_after_qc$geno))){
print(c)
fp_subdata <- fp[fp$chr == c,]
pp <- ggplot(data = fp_subdata,aes(pos, prop, group = gen, color = founder)) +
geom_line(aes(linetype=gen)) +
scale_linetype_manual(values=rep("solid",12)) +
geom_hline(yintercept=0.125, linetype="dashed", color = "black", size = 0.25) +
scale_color_manual(values = CCcolors) +
facet_grid(founder~.) +
labs(title = paste0("Chr ", c)) +
theme(legend.position='none')
print(pp)
# Print an interactive plot
# Add to list
#plt[[c]] <- as_widget(ggplotly(pp, width = 1000, height = 1000))
}
[1] "1"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "2"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "3"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "4"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "5"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "6"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "7"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "8"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "9"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "10"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "11"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "12"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "13"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "14"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "15"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "16"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "17"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "18"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "19"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
[1] "X"
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
#plt
load("data/Jackson_Lab_Bubier_MURGIGV01/recom_block_size.RData")
#Create an appropriately sized vector of names
nameVector <- unlist(mapply(function(x,y){ rep(y, length(x)) }, pos_ind_gen, names(pos_ind_gen)))
#Create the result
recom_block <- cbind.data.frame(unlist(pos_ind_gen), nameVector)
colnames(recom_block) <- c("sizeblock",
"ngen")
#remove 0
recom_block <- recom_block[recom_block$sizeblock != 0,]
#mean
means <- aggregate(sizeblock~ngen, data= recom_block,mean)
means$sizeblock <- round(means$sizeblock, 2)
pdf(file = "data/Jackson_Lab_Bubier_MURGIGV01/boxplot_mean_recomb_block_size.pdf", height = 8, width = 10)
p1 <- ggplot(recom_block, aes(x=ngen, y=sizeblock, group = ngen, fill = ngen)) +
geom_boxplot(show.legend = F , outlier.size = 0.5, notchwidth = 3) +
scale_fill_discrete_qualitative(palette = "warm")+
geom_text(data = means, alpha = 0.85, aes(label = sizeblock, y = sizeblock + 0.15 )) +
ylab("Recombination Block Size (Mb)") +
xlab("Generation") +
labs(fill = "") +
#ylim(c(0, 60)) +
scale_y_continuous(breaks=c(0,5,10, 20, 40, 60), limits=c(0, 60)) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
text = element_text(size=16),
axis.title=element_text(size=16)) +
guides(shape = guide_legend(override.aes = list(size = 12)))
p1
dev.off()
png
2
p1
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
#block size distribution
for(g in unique(gm_after_qc$covar$ngen)){
#plot for recom block size
#png(paste0("data/Jackson_Lab_Bubier_MURGIGV01/DO_recom_block_size_G", g, ".png"))
x <- pos_ind_gen[[g]][pos_ind_gen[[g]] != 0]
# estimate the parameters
fit1 <- fitdistr(x, "exponential")
# goodness of fit test
ks.test(x, "pexp", fit1$estimate) # p-value > 0.05 -> distribution not refused
# plot a graph
hist(x,
freq = FALSE,
breaks = 200,
xlim = c(0, 5+quantile(x, 1)),
#ylim = c(0,0.3),
xlab = "Recombination Block Size (Mb)",
main = paste0("Gen ", g))
curve(dexp(x, rate = fit1$estimate),
from = 0,
to = 5+quantile(x, 1),
col = "red",
add = TRUE)
#dev.off()
}
Warning in ks.test(x, "pexp", fit1$estimate): ties should not be present for the
Kolmogorov-Smirnov test
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
load("data/Jackson_Lab_Bubier_MURGIGV01/dat_het_ind_pr.RData")
pdf(paste("data/Jackson_Lab_Bubier_MURGIGV01/DO_Heterozygosity_value_violin_genoprops.pdf"), width = 10, height =8)
p2 <- ggplot(dat_het_ind_pr, aes(x=ngen, y=het, group=ngen, fill=ngen)) +
geom_violin(show.legend = FALSE) +
geom_boxplot(show.legend = FALSE, width=0.35, color="black", alpha=0.6) +
#scale_fill_discrete_qualitative(palette = "warm")+
ylab("Heterozygosity from genotype props") +
xlab("Generation") +
ylim(c(0.65, 1)) +
geom_hline(yintercept=0.875, linetype="dashed", color = "red") +
#scale_y_continuous(breaks=c(0.55, 0.65, 0.75, 0.85, 0.95, 1), limits=c(0.55, 1)) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
text = element_text(size=16),
axis.title=element_text(size=16),
legend.title=element_blank())
p2
dev.off()
png
2
p2
Version | Author | Date |
---|---|---|
468ae22 | xhyuo | 2021-06-24 |
#pull marker UNC13316610
gm.UNC13316610 <- pull_markers(gm_after_qc, "UNC13316610")
#genotype freq
gfreq <- calc_raw_geno_freq(gm.UNC13316610, by = c("marker"))
gfreq_tab <- gfreq %>%
as.data.frame() %>%
mutate(id = rownames(gfreq)) %>%
mutate(C_freq = (2*AA + AB)/(2*(AA+AB+BB))) %>%
mutate(T_freq = 1-C_freq) %>%
dplyr::select(CC = AA,
CT = AB,
TT = BB,
C_freq,
T_freq) %>%
mutate(chisq = HWChisq(c(91, 215, 80))$chisq,
df = HWChisq(c(91, 215, 80))$df,
p = HWChisq(c(91, 215, 80))$p)
Chi-square test with continuity correction for Hardy-Weinberg equilibrium (autosomal)
Chi2 = 4.756968 DF = 1 p-value = 0.0291799 D = 11.07837 f = -0.114895
Chi-square test with continuity correction for Hardy-Weinberg equilibrium (autosomal)
Chi2 = 4.756968 DF = 1 p-value = 0.0291799 D = 11.07837 f = -0.114895
Chi-square test with continuity correction for Hardy-Weinberg equilibrium (autosomal)
Chi2 = 4.756968 DF = 1 p-value = 0.0291799 D = 11.07837 f = -0.114895
gfreq_tab
CC CT TT C_freq T_freq chisq p
UNC13316610 0.235443 0.556962 0.2075949 0.5139241 0.4860759 4.756968 0.4857513
#
#AA AB BB
#91 215 80
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.2 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid parallel stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] HardyWeinberg_1.7.1 Rsolnp_1.16 mice_3.13.0
[4] colorspace_2.0-0 MASS_7.3-53 vcd_1.4-8
[7] lme4_1.1-26 Matrix_1.2-18 regress_1.3-21
[10] gap_1.2.2 abind_1.4-5 doParallel_1.0.16
[13] iterators_1.0.13 foreach_1.5.1 data.table_1.13.6
[16] forcats_0.5.1 stringr_1.4.0 dplyr_1.0.4
[19] purrr_0.3.4 readr_1.4.0 tidyr_1.1.2
[22] tibble_3.0.6 ggplot2_3.3.3 tidyverse_1.3.0
[25] table1_1.2.1 qtl2_0.24 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] nlme_3.1-152 fs_1.5.0 lubridate_1.7.9.2 bit64_4.0.5
[5] httr_1.4.2 rprojroot_2.0.2 tools_4.0.3 backports_1.2.1
[9] R6_2.5.0 DBI_1.1.1 withr_2.4.1 tidyselect_1.1.0
[13] bit_4.0.4 compiler_4.0.3 git2r_0.28.0 cli_2.3.0
[17] rvest_0.3.6 xml2_1.3.2 labeling_0.4.2 scales_1.1.1
[21] lmtest_0.9-38 digest_0.6.27 minqa_1.2.4 rmarkdown_2.6
[25] pkgconfig_2.0.3 htmltools_0.5.1.1 highr_0.8 dbplyr_2.1.0
[29] fastmap_1.1.0 rlang_0.4.10 readxl_1.3.1 rstudioapi_0.13
[33] RSQLite_2.2.3 farver_2.0.3 generics_0.1.0 zoo_1.8-8
[37] jsonlite_1.7.2 magrittr_2.0.1 Formula_1.2-4 Rcpp_1.0.6
[41] munsell_0.5.0 lifecycle_1.0.0 stringi_1.5.3 whisker_0.4
[45] yaml_2.2.1 blob_1.2.1 promises_1.2.0.1 crayon_1.4.1
[49] lattice_0.20-41 haven_2.3.1 splines_4.0.3 hms_1.0.0
[53] knitr_1.31 pillar_1.4.7 boot_1.3-27 codetools_0.2-18
[57] reprex_1.0.0 glue_1.4.2 evaluate_0.14 modelr_0.1.8
[61] vctrs_0.3.6 nloptr_1.2.2.2 httpuv_1.5.5 cellranger_1.1.0
[65] gtable_0.3.0 assertthat_0.2.1 cachem_1.0.4 xfun_0.21
[69] broom_0.7.4 later_1.1.0.1 truncnorm_1.0-8 memoise_2.0.0
[73] statmod_1.4.35 ellipsis_0.3.1
This R Markdown site was created with workflowr